Evaluating Apache Cassandra™ as a Cloud Database
Table of Contents

Table of Contents .. 2

Abstract .. 3

Introduction .. 3

Why a Cloud Database? .. 3
 Transparent Elasticity .. 3
 Transparent Scalability ... 3
 High Availability .. 4
 Easy Data Distribution .. 4
 Data Redundancy .. 4
 Support for All Data Types ... 4
 Easier Manageability ... 5
 Lower Cost ... 5

Evaluating Apache Cassandra as a Cloud Database ... 5

What Is Apache Cassandra? ... 5

Why Cassandra? .. 5

Netflix – An Example of Succeeding in the Cloud with Cassandra ... 6

DataStax Enterprise – Certified Cassandra for Production Applications 7

DataStax Enterprise – Real-Time, Analytics, and Search in the Cloud 7

Solving the Cloud Mixed-Workload Problem .. 7

A Complete Online Database Platform for the Cloud ... 8

A Secure Big Data Platform for the Cloud .. 8

Visual Database Management .. 8

Enterprise Support and Services .. 9

Conclusion ... 9

About DataStax .. 9
Abstract

Within the next couple of years, the amount of information stored "in the cloud" is expected to grow by large amounts, but some IT professionals remain standoffish toward the idea of porting a company’s data onto a public cloud for lack perceived tangible benefits. When evaluating a move of any amount of data to a cloud database, today’s IT decision-makers need to understand whether the solution they’re considering is designed and/or implemented to maximize the promises of cloud computing. This paper examines key characteristics and discusses how Apache Cassandra™ stacks up from an evaluation perspective.

Introduction

The amount of information that currently resides only in the cloud is small, but that’s about to change. A recent study by IT industry analyst group IDC estimates that cloud computing accounts for less than 2 percent of IT spending today, but by 2015, nearly 20 percent of all information will be “touched” (stored or processed) in a cloud.¹ Moreover, IDC predicts that by that same year, as much as 10 percent of all data will be maintained in a cloud.²

Despite the growing movement toward cloud computing, some IT professionals remain standoffish toward the idea of porting a company’s data onto a public cloud computing platform such as Amazon, Rackspace, and others. This position is understandable, given the current confusion over whether running a database in a cloud environment actually delivers tangible benefits – technical and otherwise – over keeping that same data on-premise.

Whether deciding to move a small or significant amount of data to a cloud database, today’s IT decision-makers need to understand whether the solution they’re considering is designed and/or implemented in a way that utilizes all the benefits and promises of cloud computing. This paper examines those key characteristics and discusses how Apache Cassandra™ stacks up from an evaluation perspective.

Why a Cloud Database?

First, it should be understood that a cloud database is more than simply taking traditional relational database management system (RDBMS) software and running an instance of it on a cloud platform such as Amazon. Such a deployment in no way maximizes the capabilities of a cloud-computing environment.

But what constitutes a cloud-ready database? What features and functionalities must the database have to deliver on the potential that cloud computing offers? What follows is a discussion of some of the key promises of the cloud and the types of features a database should have to supply real benefits in a cloud environment.

Transparent Elasticity

The first promise of cloud computing worth noting is transparent elasticity. This equates to being able to add and subtract nodes (defined as actual physical machines or virtual machines) when the underlying application and business demands it.

Further, this capability should allow for online operations so that no downtime is experienced during expansion and contraction. In addition, a clustered database configuration should allow for some sort of easy load balancing so that an even distribution of the total workload is experienced.

Transparent Scalability

The primary reason for wanting elasticity in a cloud database is to scale properly to meet what businesses hope will be increasing customer traffic and accompanying workload. When talking about scale, there are normally two goals.

First, scaling out in the cloud carries with it an expectation that adding nodes will increase the performance of the database. The hope is that linear scalability will be experienced; for example, if two nodes are able to handle a throughput of 200,000 transactions, then four nodes should be able to manage 400,000.

Scale and speed are of the utmost concern to modern businesses today, and for good reason. A brief look at the following facts³ from some of today’s premier software and services providers demonstrates how performance impacts their business:
• Amazon says every 100 millisecond (ms) delay has the potential to cost the company 1 percent of sales (in 2009, that translated to US$245 million)
• Microsoft discovered that an additional 500ms of delay on its webpage loads resulted in the loss of about 1.2 percent in revenue per user
• Mozilla shaved 2.2 seconds of load time off its landing pages and correspondingly increased download conversions by 15.4 percent, which translated into an additional 60 million downloads each year
• Shopzilla reduced its page load time by five seconds and saw an increase of 25 percent in page views and a 7 to 12 percent increase in revenue
• Experts estimate that just a 10ms latency could result in a reduction in revenue for U.S. brokerage houses of 10 percent

Second, scaling out also equates to being able to tackle “big data” while maintaining response time service level agreements (SLAs). This means that no matter the data volume size, end user requests should be serviced every bit as fast as if the data volume size was much less.

High Availability
Another key promise of cloud computing is increased uptime. Like performance and scalability, availability is critical to successful businesses. The cost of database downtime can vary widely depending on the industry; however, average downtime costs can range anywhere from about US$90,000 per hour in the media industry to about US$6.48 million per hour for large online brokerages.5

A database implemented in the cloud should have features that piggyback off of a cloud provider’s infrastructure where high availability is concerned. Additionally, that database’s degree of availability often is affected by the next two cloud computing promises: easy data distribution and redundancy.

Easy Data Distribution
Cloud providers typically promise the ability to distribute compute resources and data across different geographies or “zones” that the cloud provider makes available. Where the underlying database of a cloud application is concerned, this usually equates to a couple of desirable features.

First is the ability to read and write from any node that makes up the cloud database. Again, master-slave architectures usually have a difficult time meeting this requirement, especially where writes are concerned. Reads may be served up across various slave servers, but writes are a different matter.

The multi-geographic data distribution also supplies the benefits of high availability if a particular region goes down, and simplified disaster recovery so the data is protected if a particular physical disaster befall one of the cloud provider’s data centers. Of course, this assumes the database actually contains redundant copies of data spread across different data centers of the cloud provider, which brings us to the next point.

Data Redundancy
Cloud providers typically promise the ability to distribute compute resources and data across different geographies or “zones” that the cloud provider makes available. Where the underlying database of a cloud application is concerned, this usually equates to a couple of desirable features.

First is the ability to read and write from any node that makes up the cloud database. Again, master-slave architectures usually have a difficult time meeting this requirement, especially where writes are concerned. Reads may be served up across various slave servers, but writes are a different matter.

The multi-geographic data distribution also supplies the benefits of high availability if a particular region goes down, and simplified disaster recovery so the data is protected if a particular physical disaster befalls one of the cloud provider’s data centers. Of course, this assumes the database actually contains redundant copies of data spread across different data centers of the cloud provider, which brings us to the next point.

Support for All Data Types
Cloud computing, in general, attempts to welcome all data types and formats – structured, semi-structured, and unstructured. However, doing so is more easily said than done. The database being implemented in the cloud is really the key determiner of whether the cloud provider can easily keep this promise. This is where today’s NoSQL databases shine over legacy RDBMSs because they typically offer a flexible and dynamic schema that accepts all key data formats more straightforwardly.
Easier Manageability
All cloud providers tout their ease-of-use, but the reality is that managing a distributed and geographically dispersed database is, normally, anything but easy. Web-based interfaces supplied by the cloud provider often can help with management duties. But for specific monitoring and management of the cloud database's particular feature set, the database vendor should provide a tool or set of tools that helps carry out routine administrative operations.

Lower Cost
Many IT professionals who begin looking at the cloud as an alternative to typical on-premise architectures assume they will experience cheaper software costs in a cloud implementation. However, they often have a rude awakening when they fail to experience cost benefits from managing data in the cloud. The cold reality is that some traditional RDBMS providers are every bit as expensive in a cloud implementation as they are in a standard on-premise implementation.

When looking to implement a database in the cloud, IT professionals should seek a cost structure that is friendly to scaling out horizontally, regardless of machine size or the data volume being managed. Otherwise, there is risk of unpleasant cost increases when the underlying business becomes very successful and more nodes are needed to manage ballooning data volumes and increased concurrent users.

Evaluating Apache Cassandra as a Cloud Database
So what is Apache Cassandra and how does it stack up against the criteria for cloud databases previously discussed? Following is an overview of Cassandra, including a description of the key technology differentiators that make it a stand-out cloud database. Also discussed is how DataStax Enterprise – a smart data platform powered by Cassandra – provides the best possible cloud database option for those needing to manage real-time, analytic, and enterprise search data in a cloud environment.

What Is Apache Cassandra?
Apache Cassandra is an open source massively scalable NoSQL database. Cassandra excels at being the underlying database for modern online applications that need extremely fast read and write operations. Cassandra can also easily manage the distribution of data across multiple data centers and cloud availability zones, and offers online additions of capacity via new nodes while providing continuous availability for the system as a whole.

Why Cassandra?
Key technical differentiators that make Cassandra a winning choice in a cloud-computing environment include the following:

- A built-for-scale architecture that can handle terabytes of information and thousands of concurrent users/operations per second as easily as it can manage much smaller amounts of data and user traffic
- Masterless design that offers no single point of failure for any database process or function; every node is the same, so there is no concept of a master node or anything similar
- Online capacity additions that deliver linear performance gains for both read and write operations
- Read/write anywhere capabilities that equate to a true network-independent method of storing and accessing data
- Guaranteed data safety that ensures no loss of data, no matter what node is written to in a cluster
- Tunable data consistency that allows Cassandra to offer the data durability and protection like an RDBMS, but with the flexible choice of relaxing data consistency when application use cases allow
- Flexible/dynamic schema design that accommodates all formats of big data applications, including structured, semi-structured, and unstructured data; data is represented in Cassandra via column families that are dynamic in nature and accommodate all modifications online
• Simplified replication that provides data redundancy and is capable of being multi-data center and cloud in nature
• Security that includes authorization and authentication control
• Data compression that reduces the footprint of raw big data by over 80 percent in some use cases
• A SQL-like language (CQL – Cassandra Query Language) that lessens the learning curve for developers and administrators coming from the RDBMS world
• Support for key developer languages (e.g., Java, Python) and operating systems
• No requirement for any special equipment; Cassandra runs on commodity hardware
• Very easy installations in cloud environments including Amazon Machine Images (AMIs) that enable a user to be up and running with a multiple-node cluster in minutes

Cassandra is built with the assumption that failures can and will occur in a data center or cloud infrastructure. Therefore, data redundancy to protect against hardware failure and other data loss scenarios is built into and managed transparently by Cassandra. Furthermore, this capability can be configured so that big data applications can use a single large database distributed across multiple, geographically dispersed data centers, between different physical racks in a data center, and between public cloud providers and on-premise managed data centers.

These and other capabilities make Cassandra and DataStax Enterprise the first and best database choice for modern businesses with online data management needs that have outgrown traditional RDBMS software.

Netflix – An Example of Succeeding in the Cloud with Cassandra
With more than 25 million members worldwide, Netflix, Inc. (Nasdaq: NFLX) is the world’s leading Internet subscription service for enjoying movies and TV shows. Netflix allows its members to instantly watch unlimited movies and TV episodes streaming over the Internet to computers and TVs.

Figure 1: Cassandra multi-data center capabilities

Figure 2: Performance results from Netflix’s benchmark of Cassandra in the cloud

Cassandra and DataStax are a key part of Netflix’s database infrastructure, with everything being hosted in the cloud. Netflix gave a presentation at the 2011 High Performance Transaction System workshop that demonstrated both the ease of use
and linear performance capabilities of using Cassandra in the cloud. The following is an excerpt from a Netflix blog post summarizing the presentation:

“The automated tooling that Netflix has developed lets us quickly deploy large scale Cassandra clusters, in this case a few clicks on a web page and about an hour to go from nothing to a very large Cassandra cluster consisting of 288 medium sized instances, with 96 instances in each of three EC2 availability zones in the US-East region. Using an additional 60 instances as clients running the stress program we ran a workload of 1.1 million client writes per second. Data was automatically replicated across all three zones making a total of 3.3 million writes per second across the cluster.”

The linear performance capabilities are illustrated well in the Netflix benchmark, delivering a very impressive 1.1 million writes per second. The ease with which Cassandra nodes can be configured and implemented in the cloud is also clear.

In addition, Netflix produced a Cassandra benchmark using SSD’s on AWS with the end result being that a standard disk configuration (48 nodes on m2.4xlarge. 36 EVCache on m2.xlarge) was replaced by an SSD setup that was literally ¼ the size (12 nodes on hi1.4xlarge) and delivered the same throughput with lower latency and half the cost:

By contrast, DataStax Enterprise only contains selected Cassandra releases chosen by the expert staff and committers at DataStax. Each selected release is then put through a rigorous certification process designed by DataStax engineers and QA staff to ensure it is stable and ready for enterprise production systems. Any found issues are immediately fixed and applied to the DataStax Enterprise server.

In addition, DataStax provides enterprises with predictable, certified quarterly service pack updates as well as other software benefits such as emergency hot fixes (for production outages) and bug escalation privileges that prioritize customers’ issues over community-submitted bugs.

DataStax Enterprise – Real-Time, Analytics, and Search in the Cloud

Through its offerings, DataStax supports businesses that need a progressive data management system that can serve as a real-time datastore for critical online production applications, and delivers built-in analytic and search capabilities for analyzing and searching that data once it is in Cassandra.

DataStax Enterprise inherits Cassandra’s entire, powerful feature set for servicing modern platform that provides Hadoop MapReduce, Hive, and Pig support for analytics and uses Apache Solr for fast enterprise search.

Solving the Cloud Mixed-Workload Problem

A primary benefit that DataStax Enterprise provides to enterprises needing smart big data management capabilities is its ability to service real-time, analytic, and enterprise search data operations in the same database cluster without any of the loads impacting the other. The key to making this possible is the underlying architecture of Cassandra.

Analytics in the Cloud

Built into DataStax Enterprise are analytic functions and components that allow for the easy analysis of Cassandra data. DataStax Enterprise provides integrated Hadoop MapReduce, Hive, Pig, Mahout, Sqoop and job/task tracking capabilities, replacing Hadoop’s HDFS storage layer with Cassandra (CassandraFS). The end product is a single integrated solution that allows analytics to be run on Cassandra data.

Search in the Cloud

DataStax Enterprise includes strong enterprise search support via Lucene and Apache Solr. Search capabilities in DataStax Enterprise include robust full-text search, hit highlighting, faceted search, rich
document (e.g., PDF, Microsoft Word) handling, and geospatial search, all of which operate on Cassandra data.

A Complete Online Database Platform for the Cloud
A key benefit of DataStax Enterprise is the tight feedback loop it has between real-time applications and the analytics and search operations that naturally follow. Traditionally, users would be forced to move data between systems via complex ETL processes, or perform both functions on the same system with the risk of one impacting the other. In big data environments, this process can be time-consuming and burdensome.

With DataStax Enterprise, real-time, analytic, and search big data operations take place in the same distributed system, but users have the ability to dedicate certain nodes solely for analytics or search so their workloads don’t slow down real-time processing. Users simply define one or more replica groups, and configure the role of each – one or more Cassandra, analytics, and search nodes. Writes are instantly replicated between all nodes.

With DataStax Enterprise, users truly have the best of all worlds for their online database applications. They have all the power of Cassandra serving their highest-volume and high-velocity, real-time applications; the power of running analytics on their Cassandra data; and enterprise search on that same data in one distributed database. The result is smart workload isolation for big data/online applications that is much simpler to manage and more reliable than any alternative.

A Secure Big Data Platform for the Cloud
Data security is a top concern and priority of nearly every CTO and CIO. Securing sensitive data and keeping it out of the hands of those who should not have access is challenging even in traditional database environments, let alone a cloud setting.

DataStax Enterprise supplies the most comprehensive security feature set of any NoSQL solution for the cloud. DataStax Enterprise may be deployed with confidence in cloud environments where data security is a top priority because it contains the types of security capabilities that modern enterprises need for data protection, including strong authentication, authorization, encryption, and data auditing capabilities.

Visual Database Management
DataStax Enterprise includes a visual, browser-based management solution named OpsCenter to manage and monitor cloud database deployments. OpsCenter allows a developer or administrator to manage and monitor the health of cloud databases from a centralized web console.

OpsCenter uses an agent-based architecture to monitor and carry out tasks on each node in a DataStax Enterprise cluster. Through a graphical and intuitive point-and-click interface, a user can understand the state of a cluster, which nodes are up and down, and what type of performance users are experiencing. Key events are reported into a centralized dashboard displayed along with other vital statistics. Analytic and search operations also can be monitored and controlled from within OpsCenter.
Enterprise Support and Services
Cloud implementations often require fast access to skilled expertise. DataStax Enterprise includes experienced support and consultative services from Cassandra experts who know cloud environments. IT professionals can choose the right production or development support package for their business needs, including rapid response SLAs and consultative help. Additionally, DataStax offers professional training on Cassandra, Hadoop, and Solr with classes offered in many major cities as well as on-site for corporations that need many staff members trained at once.

Conclusion
Moving to a cloud-based infrastructure necessitates choosing a database that is capable of fully utilizing all the benefits the cloud provides. The following table illustrates how Apache Cassandra meets all key attributes required of a cloud database, and how DataStax Enterprise, which is powered by Cassandra, delivers a unique, smart data platform ready for the cloud and capable of managing both real-time and analytic data in the same database cluster.

<table>
<thead>
<tr>
<th>Cloud Database Requirement</th>
<th>Meet?</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent elasticity</td>
<td>Yes</td>
<td>Peer-to-peer architecture makes scaling out in an online fashion easy</td>
</tr>
<tr>
<td>Transparent scalability</td>
<td>Yes</td>
<td>Linear performance gains delivered through node additions; big data-capable</td>
</tr>
<tr>
<td>High availability</td>
<td>Yes</td>
<td>No single point of failure</td>
</tr>
<tr>
<td>Strong security</td>
<td>Yes</td>
<td>Full, robust data protection framework.</td>
</tr>
<tr>
<td>Easy data distribution</td>
<td>Yes</td>
<td>Simple replication among one or more data centers, geographies, and the cloud;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>read/write anywhere design</td>
</tr>
<tr>
<td>Data redundancy</td>
<td>Yes</td>
<td>Data is easily replicated across many regions, with rack awareness also supported</td>
</tr>
<tr>
<td>Support for all data formats</td>
<td>Yes</td>
<td>Structured, semi-structured, and unstructured data is supported in data model</td>
</tr>
<tr>
<td>Simple manageability</td>
<td>Yes</td>
<td>Easy AMI installs for the cloud; web-based tools are also provided</td>
</tr>
<tr>
<td>Low cost</td>
<td>Yes</td>
<td>Apache Cassandra is free/open source; DataStax Enterprise is 80 to 90 percent less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expensive than legacy RDBMS software</td>
</tr>
</tbody>
</table>

To find out more about DataStax Enterprise and obtain software, please visit www.datastax.com or email info@datastax.com.

About DataStax
DataStax provides a massively scalable enterprise NoSQL platform to run modern online applications for some of the world’s most innovative and data-intensive enterprises. Powered by the open source Apache Cassandra™ database, DataStax delivers a fully distributed, continuously available platform that is faster to deploy and less expensive to maintain than other database platforms.

DataStax has more than 500 customers in 38 countries including leaders such as Netflix, Rackspace, Pearson Education, and Constant Contact, and spans verticals including web, financial services, telecommunications, logistics, and government. Based in San Mateo, Calif., DataStax is backed by industry-leading investors including Lightspeed Venture Partners, Meritech Capital, and Crosslink Capital.
2 Ibid.
3 For individual references for each statistic, go to http://blog.equinix.com/2011/03/optimizing-internet-application-performance/.