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Foreword

Cassandra was open sourced by Facebook in July 2008. This original version of Cas-
sandra was written primarily by an ex-employee from Amazon and one from Micro-
soft. It was strongly influenced by Dynamo, Amazon’s pioneering distributed key-
value database. Cassandra implements a Dynamo-style replication model with no
single point of failure, but adds a more powerful “column family” data model.

I became involved in December of that year, when Rackspace asked me to build them
a scalable database. This was good timing, because all of today’s important open
source scalable databases were available for evaluation. Despite initially having only a
single major use case, Cassandra’s underlying architecture was the strongest, and I
directed my efforts toward improving the code and building a community.

Cassandra was accepted into the Apache Incubator, and by the time it graduated in
March 2010, it had become a true open source success story, with committers from
Rackspace, Digg, Twitter, and other companies that wouldn't have written their own
database from scratch, but together built something important.

Today’s Cassandra is much more than the early system that powered (and still pow-
ers) Facebook’s inbox search; it has become “the hands-down winner for transaction
processing performance,” to quote Tony Bain, with a deserved reputation for reliabil-
ity and performance at scale.

As Cassandra matured and began attracting more mainstream users, it became clear
that there was a need for commercial support; thus, Matt Pfeil and I cofounded Rip-
tano in April 2010. Helping drive Cassandra adoption has been very rewarding, espe-
cially seeing the uses that don't get discussed in public.

Another need has been a book like this one. Like many open source projects, Cassan-
dra’s documentation has historically been weak. And even when the documentation
ultimately improves, a book-length treatment like this will remain useful.
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Thanks to Eben for tackling the difficult task of distilling the art and science of devel-

oping against and deploying Cassandra. You, the reader, have the opportunity to
learn these new concepts in an organized fashion.

— Jonathan Ellis, Project Chair, Apache Cassandra
(2010-2016), and Cofounder and CTO, DataStax
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Foreword

I am so excited to be writing the foreword for the new edition of Cassandra: The
Definitive Guide. Why? Because there is a new edition! When the original version of
this book was written, Apache Cassandra was a brand new project. Over the years, so
much has changed that users from that time would barely recognize the database
today. It’s notoriously hard to keep track of fast-moving projects like Apache Cassan-
dra, and I'm very thankful to Jeff for taking on this task and communicating the latest
to the world.

One of the most important updates to the new edition is the content on modeling
your data. I have said this many times in public: a data model can be the difference
between a successful Apache Cassandra project and a failed one. A good portion of
this book is now devoted to understanding how to do it right. Operations folks, you
haven’t been left out either. Modern Apache Cassandra includes things such as virtual
nodes and many new options to maintain data consistency, which are all explained in
the second edition. There’s so much ground to cover—it’s a good thing you got the
definitive guide!

Whatever your focus, you have made a great choice in learning more about Apache
Cassandra. There is no better time to add this skill to your toolbox. Or, for experi-
enced users, maintaining your knowledge by keeping current with changes will give
you an edge. As recent surveys have shown, Apache Cassandra skills are some of the
highest paying and most sought after in the world of application development and
infrastructure. This also shows a very clear trend in our industry. When organiza-
tions need a highly scaling, always-on, multiple data center database, you can't find a
better choice than Apache Cassandra. A quick search will yield hundreds of compa-
nies that have staked their success on our favorite database. This trust is well-
founded, as you will see as you read on. As applications are moving to the cloud by
default, Cassandra keeps up with dynamic and global data needs. This book will teach
you why and how to apply it in your application. Build something amazing and be yet
another success story.
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And finally, I invite you to join our thriving Apache Cassandra community. World-
wide, the community has been one of the strongest nontechnical assets for new users.
We are lucky to have a thriving Cassandra community, and collaboration among our
members has made Apache Cassandra a stronger database. There are many ways you
can participate. You can start with simple things like attending meetups or conferen-
ces, where you can network with your peers. Eventually you may want to make more
involved contributions like writing blog posts or giving presentations, which can add
to the group intelligence and help new users following behind you. And, the most
critical part of an open source project, make technical contributions. Write some
code to fix a bug or add a feature. Submit a bug report or feature request in a JIRA.
These contributions are a great measurement of the health and vibrancy of a project.
You don't need any special status, just create an account and go! And when you need
help, refer back to this book, or reach out to our community. We are here to help you
be successful.

Excited yet? Good!

Enough of me talking, it's time for you to turn the page and start learning.

— Patrick McFadin, Chief Evangelist for Apache
Cassandra, DataStax

xvi | Foreword



Preface

Why Apache Cassandra?

Apache Cassandra is a free, open source, distributed data storage system that differs
sharply from relational database management systems (RDBMSs).

Cassandra first started as an Incubator project at Apache in January of 2009. Shortly
thereafter, the committers, led by Apache Cassandra Project Chair Jonathan Ellis,
released version 0.3 of Cassandra, and steadily made releases up to the milestone 3.0
release. Since 2017, the project has been led by Apache Cassandra Project Chair Nate
McCall, producing releases 3.1 through the latest 4.0 release. Cassandra is being used
in production by some of the biggest companies on the web, including Facebook,
Twitter, and Netflix.

Its popularity is due in large part to the outstanding technical features it provides. It is
durable, seamlessly scalable, and tuneably consistent. It performs blazingly fast writes,
can store hundreds of terabytes of data, and is decentralized and symmetrical so
there’s no single point of failure. It is highly available and offers a data model based on
the Cassandra Query Language (CQL).

Is This Book for You?

This book is intended for a variety of audiences. It should be useful to you if you are:

« A developer working with large-scale, high-volume applications, such as Web 2.0
social applications, ecommerce sites, financial services, or sensor-based Internet
of Things (IoT) systems

« An application architect or data architect who needs to understand the available
options for high-performance, decentralized, elastic data stores
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o A database administrator or database developer currently working with standard
relational database systems who needs to understand how to implement a fault-
tolerant, eventually consistent data store

A manager who wants to understand the advantages (and disadvantages) of Cas-
sandra to help make decisions about technology strategy

o A student, analyst, or researcher who is designing a project related to Cassandra
or other nonrelational data store options

This book is a technical guide. In many ways, Cassandra and other NoSQL databases
represent a new way of thinking about data. Many developers who gained their pro-
fessional chops in the last 15-20 years have become well versed in thinking about
data in purely relational or object-oriented terms. Cassandras data model is different
and can be difficult to wrap your mind around at first, especially for those of us with
entrenched ideas about what a database is (and should be).

Using Cassandra does not mean that you have to be a Java developer. However, Cas-
sandra is written in Java, so if you're going to dive into the source code, a solid under-
standing of Java is crucial. Many of the examples in this book are in Java, but
Cassandra drivers are available in a wide variety of languages, including Java, Node.js,
Python, C#, PHP, Ruby, and Go.

Finally, it is assumed that you have a good understanding of how the web works, can
use an integrated development environment (IDE), and are somewhat familiar with
the typical concerns of data-driven applications. You might be a well-seasoned devel-
oper or administrator but still, on occasion, encounter tools used in the Cassandra
world that you're not familiar with. For example, Apache Ant is used to build Cassan-
dra, and the Cassandra source code is available via Git. In cases where we speculate
that you’ll need to do a little setup of your own in order to work with the examples,
we try to support that.

What's in This Book?

This book is designed with the chapters acting, to a reasonable extent, as standalone
guides. This is important for a book on Cassandra, which has a variety of audiences
in different job roles and industries. To borrow from the software world, the book is
designed to be modular. If youre new to Cassandra, it makes sense to read the book
in order; if you've passed the introductory stages, you will still find value in later
chapters, which you can read as standalone guides.

Here is how the book is organized:

Chapter 1, Beyond Relational Databases
This chapter reviews the history of the enormously successful relational database
and the rise of nonrelational database technologies like Cassandra.
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Chapter 2, Introducing Cassandra
This chapter introduces Cassandra and discusses what’s exciting and different
about it, where it came from, and what its advantages are.

Chapter 3, Installing Cassandra
This chapter walks you through installing Cassandra, getting it running, and try-
ing out some of its basic features.

Chapter 4, The Cassandra Query Language
Here we look at Cassandra’s data model, highlighting how it differs from the tra-
ditional relational model. We also explore how this data model is expressed in the
Cassandra Query Language (CQL).

Chapter 5, Data Modeling
This chapter introduces principles and processes for data modeling in Cassandra.
We analyze a well-understood domain to produce a working schema.

Chapter 6, The Cassandra Architecture
This chapter helps you understand what happens during read and write opera-
tions and how the database accomplishes some of its notable aspects, such as
durability and high availability. We go under the hood to understand some of the
more complex inner workings, such as the gossip protocol, hinted handoffs, read
repairs, Merkle trees, and more.

Chapter 7, Designing Applications with Cassandra
In order to help make some of Cassandra’s architecture concepts more concrete,
we'll explore some of the common ways in which Cassandra figures into the
architecture and design of modern cloud applications.

Chapter 8, Application Development with Drivers
There are a variety of drivers available for different languages, including Java,
Node.js, Python, Ruby, C#, and PHP, in order to abstract Cassandra’s lower-level
APIL. We help you understand how to use common driver features to develop
applications with Cassandra.

Chapter 9, Writing and Reading Data
We build on the previous chapters to learn how Cassandra works “under the cov-
ers” to read and write data. We'll also discuss concepts such as batches, light-
weight transactions, and paging.

Chapter 10, Configuring and Deploying Cassandra
This chapter shows you how to specify partitioners, replica placement strategies,
and snitches. We set up a cluster and see the implications of different configura-
tion choices. Well discuss how to plan your cluster deployments, including
hybrid and multicloud deployments using providers such as Amazon, Microsoft,
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and Google, as well as deploying and managing clusters using Docker and
Kubernetes.

Chapter 11, Monitoring
Once your cluster is up and running, you'll want to monitor its usage, memory
patterns, and thread patterns, and understand its general activity. Cassandra has
a rich Java Management Extensions (JMX) interface baked in, which we put to
use to monitor all of these and more.

Chapter 12, Maintenance
The ongoing maintenance of a Cassandra cluster is made somewhat easier by
some tools that ship with the server. We see how to decommission a node, load
balance the cluster, get statistics, and perform other routine operational tasks.

Chapter 13, Performance Tuning
One of Cassandra’s most notable features is its speed—it’s very fast. But there are
a number of things, including memory settings, data storage, hardware choices,
caching, and buffer sizes, that you can tune to squeeze out even more perfor-
mance.

Chapter 14, Security
NoSQL technologies are often slighted as being weak on security. Thankfully,
Cassandra provides authentication, authorization, and encryption features,
which we'll learn how to configure in this chapter.

Chapter 15, Migrating and Integrating
We close the book with a summary of the steps involved in bringing Cassandra
into your enterprise, from the perspective of migrating from a relational database
to Cassandra. We'll look at the implications for data modeling, application devel-
opment, and deployment as well as how Cassandra integrates with other popular
technologies, including:

o Streaming systems such as Apache Kafka
o Search engines such as Apache Lucene, Apache Solr, and ElasticSearch

o Analytics platforms such as Apache Spark
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Cassandra Versions Used in This Book

This book was developed using Apache Cassandra 4.0 and the
DataStax Java Driver version 4.1. The formatting and content of
tool output, log files, configuration files, and error messages are as
they appear in the 4.0 release, and may change in future releases.

When discussing features added in releases 2.0 and later, we cite
the release in which the feature was added for readers who may be
using earlier versions and are considering whether to upgrade.

New for the Second Edition

The first edition of Cassandra: The Definitive Guide was the first book published on
Cassandra, and has remained highly regarded over the years. However, the Cassandra
landscape has changed significantly since 2010, both in terms of the technology itself
and the community that develops and supports that technology. Here’s a summary of
the key updates we've made to bring the book up to date:

A sense of history

The first edition was written against the 0.7 release in 2010. As of 2016, we're up
to the 3.X series. The most significant change has been the introduction of CQL
and deprecation of the old Thrift API. Other new architectural features include
secondary indexes, materialized views, and lightweight transactions. We provide
a summary release history in Chapter 2 to help guide you through the changes.
As we introduce new features throughout the text, we frequently cite the releases
in which these features were added.

Giving developers a leg up

Development and testing with Cassandra has changed a lot over the years, with
the introduction of the CQL shell (cqlsh) and the gradual replacement of
community-developed clients with the drivers provided by DataStax. We give in-
depth treatment to cqlsh in Chapter 3 and Chapter 4, and the drivers in Chap-
ter 8 and Chapter 9. We also provide an expanded description of Cassandra’s read
path and write path in Chapter 9 to enhance your understanding of the internals
and help you understand the impact of decisions.

Maturing Cassandra operations
As more and more individuals and organizations have deployed Cassandra in
production environments, the knowledge base of production challenges and best
practices to meet those challenges has increased. We've added entirely new chap-
ters on security (Chapter 14) and integration (Chapter 15), and greatly expanded
the monitoring, maintenance, and performance tuning chapters (Chapter 11
through Chapter 13) in order to relate this collected wisdom.
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New for the Third Edition

For this third edition, there is not quite as much of a time gap to cover as there was
between the first and second editions, but there have been several key changes wed
like to note:

A grown-up database

The conventional wisdom in the software engineering community has been that
it takes 5-10 years for a new database engine to fully mature. Thankfully, Cassan-
dra has reached this maturity milestone, and while the 4.0 release certainly has
some stability and availability improvements, the bulk of the new features are
focused on features that make the database easier to understand and maintain.
This edition covers new 4.0 features including: virtual tables (covered in Chap-
ter 11), audit logging (covered in Chapter 14), and change data capture (CDC)
(covered in Chapter 15).

Cassandra in cloud applications

The types of applications in which Cassandra is used continue to increase. To
help bridge the gap between concept and reality, we've added a new chapter on
this, Chapter 7. We've also updated Chapter 15 to include discussion of several
patterns for using Kafka and Cassandra together.

Changes in cloud deployment

When the second edition was published, Docker had already become a popular
choice for application deployment, but the verdict was still out on running data-
bases on Docker. Since then, there have been sufficient advances that we now feel
comfortable recommending deployment of Cassandra on Docker. Kubernetes
has emerged as the key technology for orchestrating the deployment and mainte-
nance of containers across clusters of machines. In this edition we've updated
Chapter 10 with new guidance on deployment of Cassandra to Docker and added
coverage of Kubernetes to reflect the changing landscape.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

The code examples found in this book are available for download at https://
github.com/jeffreyscarpenter/cassandra-guide and https://github.com/jeffreyscarpenter/
reservation-service.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Cassandra: The Defini-
tive Guide, Third Edition, by Jeff Carpenter (O'Reilly). Copyright 2020 Jeff Carpenter,
978-1-098-11516-6
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If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
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CHAPTER 1
Beyond Relational Databases

If at first the idea is not absurd, then there is no hope for it.
—Albert Einstein

Welcome to Cassandra: The Definitive Guide. The aim of this book is to help develop-
ers and database administrators understand this important database technology. Dur-
ing the course of this book, we will explore how Cassandra compares to traditional
relational database management systems, and help you put it to work in your own
environment.

What's Wrong with Relational Databases?

If I had asked people what they wanted, they would have said faster horses.
—Henry Ford

We ask you to consider a certain model for data, invented by a small team at a com-
pany with thousands of employees. It was accessible over a TCP/IP interface and was
available from a variety of languages, including Java and web services. This model
was difficult at first for all but the most advanced computer scientists to understand,
until broader adoption helped make the concepts clearer. Using the database built
around this model required learning new terms and thinking about data storage in a
different way. But as products sprang up around it, more businesses and government
agencies put it to use, in no small part because it was fast—capable of processing
thousands of operations a second. The revenue it generated was tremendous.

And then a new model came along.

The new model was threatening, chiefly for two reasons. First, the new model was
very different from the old model, which it pointedly controverted. It was threatening
because it can be hard to understand something different and new. Ensuing debates




can help entrench people stubbornly further in their views—views that might have
been largely inherited from the climate in which they learned their craft and the cir-
cumstances in which they work. Second, and perhaps more importantly, as a barrier,
the new model was threatening because businesses had made considerable invest-
ments in the old model and were making lots of money with it. Changing course
seemed ridiculous, even impossible.

Of course, we are talking about the Information Management System (IMS) hierarch-
ical database, invented in 1966 at IBM.

IMS was built for use in the Saturn V moon rocket. Its architect was Vern Watts, who
dedicated his career to it. Many of us are familiar with IBM’s database DB2. IBM’s
wildly popular DB2 database gets its name as the successor to DB1—the product built
around the hierarchical data model IMS. IMS was released in 1968, and subsequently
enjoyed success in Customer Information Control System (CICS) and other applica-
tions. It is still used today.

But in the years following the invention of IMS, the new model, the disruptive model,
the threatening model, was the relational database.

In his 1970 paper, “A Relational Model of Data for Large Shared Data Banks,” Dr.
Edgar E Codd, also advanced his theory of the relational model for data while work-
ing at IBM’s San Jose research laboratory. This paper, still available at http://
www.seas.upenn.edu/~zives/03f/cis550/codd.pdf, became the foundational work for
relational database management systems.

Codd’s work was antithetical to the hierarchical structure of IMS. Understanding and
working with a relational database required learning new terms, including relations,
tuples, and normal form, all of which must have sounded very strange indeed to users
of IMS. It presented certain key advantages over its predecessor, such as the ability to
express complex relationships between multiple entities, well beyond what could be
represented by hierarchical databases.

While these ideas and their application have evolved in four decades, the relational
database still is clearly one of the most successful software applications in history. It’s
used in the form of Microsoft Access in sole proprietorships, and in giant multina-
tional corporations with clusters of hundreds of finely tuned instances representing
multiterabyte data warehouses. Relational databases store invoices, customer records,
product catalogs, accounting ledgers, user authentication schemes—the very world, it
might appear. There is no question that the relational database is a key facet of the
modern technology and business landscape, and one that will be with us in its various
forms for many years to come, as will IMS in its various forms. The relational model
presented an alternative to IMS, and each has its uses.

So the short answer to the question, “What’s Wrong with Relational Databases?” on
page 1 is “Nothing”
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There is, however, a rather longer answer, which says that every once in a while an
idea is born that ostensibly changes things, and engenders a revolution of sorts. And
yet, in another way, such revolutions, viewed structurally, are simply history’s busi-
ness as usual. IMS, RDBMS, NoSQL. The horse, the car, the plane. They each build
on prior art, they each attempt to solve certain problems, and so they’re each good at
certain things—and less good at others. They coexist, even now.

So let’s examine for a moment why you might consider an alternative to the relational
database, just as Codd himself four decades ago looked at the Information Manage-
ment System and thought that maybe it wasn’t the only legitimate way of organizing
information and solving data problems, and that maybe, for certain problems, it
might prove fruitful to consider an alternative.

You encounter scalability problems when your relational applications become suc-
cessful and usage goes up. The need to gather related data from multiple tables via
joins is inherent in any relatively normalized relational database of even modest size,
and joins can be slow. The way that databases gain consistency is typically through
the use of transactions, which require locking some portion of the database so it’s not
available to other clients. This can become untenable under very heavy loads, as the
locks mean that competing users start queuing up, waiting for their turn to read or
write the data.

You typically address these problems in one or more of the following ways, some-
times in this order:

o Throw hardware at the problem by adding more memory, adding faster process-
ors, and upgrading disks. This is known as vertical scaling. This can relieve you
for a time.

o When the problems arise again, the answer appears to be similar: now that one
box is maxed out, you add hardware in the form of additional boxes in a database
cluster. Now you have the problem of data replication and consistency during
regular usage and in failover scenarios. You didn’t have that problem before.

» Now you need to update the configuration of the database management system.
This might mean optimizing the channels the database uses to write to the
underlying filesystem. You turn off logging or journaling, which frequently is not
a desirable (or, depending on your situation, legal) option.

« Having put what attention you could into the database system, you turn to your
application. You try to improve your indexes. You optimize the queries. But pre-
sumably at this scale you weren’t wholly ignorant of index and query optimiza-
tion, and already had them in pretty good shape. So this becomes a painful
process of picking through the data access code to find any opportunities for
fine-tuning. This might include reducing or reorganizing joins, throwing out
resource-intensive features such as XML processing within a stored procedure,
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and so forth. Of course, presumably you were doing that XML processing for a
reason, so if you have to do it somewhere, you move that problem to the applica-
tion layer, hoping to solve it there and crossing your fingers that you don’t break
something else in the meantime.

» You employ a caching layer. For larger systems, this might include distributed
caches such as Redis, memcached, Hazelcast, Aerospike, Ehcache, or Riak. Now
you have a consistency problem between updates in the cache and updates in the
database, which is exacerbated over a cluster.

« You turn your attention to the database again and decide that, now that the appli-
cation is built and you understand the primary query paths, you can duplicate
some of the data to make it look more like the queries that access it. This process,
called denormalization, is antithetical to the five normal forms that characterize
the relational model, and violates Codd’s 12 Rules for relational data. You remind
yourself that you live in this world, and not in some theoretical cloud, and then
undertake to do what you must to make the application start responding at
acceptable levels again, even if it’s no longer “pure”

Codd’s 12 Rules

Codd provided a list of 12 rules (there are actually 13, numbered 0
to 12) formalizing his definition of the relational model as a
response to the divergence of commercial databases from his origi-
nal concepts. Codd introduced his rules in a pair of articles in
CompuWorld magazine in October 1985, and formalized them in
the second edition of his book The Relational Model for Database
Management, which is now out of print. Although Codd’s rules rep-
resent an ideal system which commercial databases have typically
implemented only partially, they have continued to exert a key
influence over relational data modeling to the present day.

This likely sounds familiar to you. At web scale, engineers may legitimately ponder
whether this situation isn’t similar to Henry Ford’s assertion that at a certain point, it’s
not simply a faster horse that you want. And they’ve done some impressive, interest-
ing work.

We must therefore begin here in recognition that the relational model is simply a
model. That is, it’s intended to be a useful way of looking at the world, applicable to
certain problems. It does not purport to be exhaustive, closing the case on all other
ways of representing data, never again to be examined, leaving no room for alterna-
tives. If you take the long view of history, Dr. Codd’s model was a rather disruptive
one in its time. It was new, with strange new vocabulary and terms such as tuples—
familiar words used in a new and different manner. The relational model was held up
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to suspicion, and doubtless suffered its vehement detractors. It encountered opposi-
tion even in the form of Dr. Codd’s own employer, IBM, which had a very lucrative
product set around IMS and didn’t need a young upstart cutting into its pie.

But the relational model now arguably enjoys the best seat in the house within the
data world. SQL is widely supported and well understood. It is taught in introductory
university courses. Cloud-based Platform-as-a-Service (PaaS) providers such as Ama-
zon Web Services, Google Cloud Platform, Microsoft Azure, Alibaba, and Rackspace
provide relational database access as a service, including automated monitoring and
maintenance features. Often the database you end up using is dictated by architec-
tural standards within your organization. Even absent such standards, it’s prudent to
learn whatever your organization already has for a database platform. Your colleagues
in development and infrastructure have considerable hard-won knowledge.

If by nothing more than osmosis (or inertia), you have learned over the years that a
relational database is a one-size-fits-all solution.

So perhaps a better question is not, “What’s Wrong with Relational Databases?” on
page 1 but rather, “What problem do you have?”

That is, you want to ensure that your solution matches the problem that you have.
There are certain problems that relational databases solve very well. But the explosion
of the web, and in particular social networks, means a corresponding explosion in the
sheer volume of data you must deal with. When Tim Berners-Lee first worked on the
web in the early 1990s, it was for the purpose of exchanging scientific documents
between PhDs at a physics laboratory. Now, of course, the web has become so ubiqui-
tous that it’s used by everyone, from those same scientists to legions of five-year-olds
exchanging emoji about kittens. That means in part that it must support enormous
volumes of data; the fact that it does stands as a monument to the ingenious architec-
ture of the web.

But as the traditional relational databases started to bend under the weight, it became
clear that new solutions were needed.

A Quick Review of Relational Databases

Though you are likely familiar with them, let’s briefly turn our attention to some of
the foundational concepts in relational databases. This will give us a basis on which to
consider more recent advances in thought around the trade-offs inherent in dis-
tributed data systems, especially very large distributed data systems, such as those
that are required at web scale.

There are many reasons that the relational database has become so overwhelmingly
popular over the last four decades. An important one is the Structured Query Lan-
guage (SQL), which is feature-rich and uses a simple, declarative syntax. SQL was first

A Quick Review of Relational Databases | 5



officially adopted as an American National Standards Institute (ANSI) standard in
1986; since that time, it's gone through several revisions and has also been extended
with vendor-proprietary syntax such as Microsoft’s T-SQL and Oracle’s PL/SQL to
provide additional implementation-specific features.

SQL is powerful for a variety of reasons. It allows the user to represent complex rela-
tionships with the data, using statements that form the Data Manipulation Language
(DML) to insert, select, update, delete, truncate, and merge data. You can perform a
rich variety of operations using functions based on relational algebra to find a maxi-
mum or minimum value in a set, for example, or to filter and order results. SQL state-
ments support grouping aggregate values and executing summary functions. SQL
provides a means of directly creating, altering, and dropping schema structures at
runtime using Data Definition Language (DDL). SQL also allows you to grant and
revoke rights for users and groups of users using the same syntax.

SQL is easy to use. The basic syntax can be learned quickly, and conceptually SQL
and RDBMSs offer a low barrier to entry. Junior developers can become proficient
readily, and as is often the case in an industry beset by rapid changes, tight deadlines,
and exploding budgets, ease of use can be very important. And it’s not just the syntax
that’s easy to use; there are many robust tools that include intuitive graphical inter-
faces for viewing and working with your database.

In part because it’s a standard, SQL allows you to easily integrate your RDBMS with a
wide variety of systems. All you need is a driver for your application language, and
you're off to the races in a very portable way. If you decide to change your application
implementation language (or your RDBMS vendor), you can often do that painlessly,
assuming you haven’t backed yourself into a corner using lots of proprietary exten-
sions.

Transactions, ACID-ity, and Two-Phase Commit

In addition to the features mentioned already, RDBMSs and SQL also support trans-
actions. A key feature of transactions is that they execute virtually at first, allowing the
programmer to undo (using rollback) any changes that may have gone awry during
execution; if all has gone well, the transaction can be reliably committed. As Jim Gray
puts it, a transaction is “a transformation of state” that has the ACID properties (see
“The Transaction Concept: Virtues and Limitations”).

ACID is an acronym for Atomic, Consistent, Isolated, Durable, which are the gauges
you can use to assess that a transaction has executed properly and that it was success-
ful:

Atomic
Atomic means “all or nothing”; that is, when a statement is executed, every
update within the transaction must succeed in order to be called successful.
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There is no partial failure where one update was successful and another related
update failed. The common example here is with monetary transfers at an ATM:
the transfer requires a debit from one account and a credit to another account.
This operation cannot be subdivided; they must both succeed.

Consistent
Consistent means that data moves from one correct state to another correct state,
with no possibility that readers could view different values that don't make sense
together. For example, if a transaction attempts to delete a customer and their
order history, it cannot leave order rows that reference the deleted customer’s
primary key; this is an inconsistent state that would cause errors if someone tried
to read those order records.

Isolated
Isolated means that transactions executing concurrently will not become entan-
gled with each other; they each execute in their own space. That is, if two differ-
ent transactions attempt to modify the same data at the same time, then one of
them will have to wait for the other to complete.

Durable
Once a transaction has succeeded, the changes will not be lost. This doesn’t imply
another transaction won't later modify the same data; it just means that writers
can be confident that the changes are available for the next transaction to work
with as necessary.

The debate about support for transactions comes up very quickly as a sore spot in
conversations around nonrelational data stores, so let’s take a moment to revisit what
this really means. On the surface, ACID properties seem so obviously desirable as to
not even merit conversation. Presumably no one who runs a database would suggest
that data updates don’t have to endure for some length of time; that’s the very point of
making updates—that they’re there for others to read. However, a more subtle exami-
nation might lead you to want to find a way to tune these properties a bit and control
them slightly. There is, as they say, no free lunch on the internet, and once you see
how you're paying for transactions, you may start to wonder whether there’s an alter-
native.

Transactions become difficult under heavy load. When you first attempt to horizon-
tally scale a relational database, making it distributed, you must now account for dis-
tributed transactions, where the transaction isn't simply operating inside a single table
or a single database, but is spread across multiple systems. In order to continue to
honor the ACID properties of transactions, you now need a transaction manager to
orchestrate across the multiple nodes.

In order to account for successful completion across multiple hosts, the idea of a two-
phase commit (sometimes referred to as “2PC”) is introduced. The two-phase com-
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mit is a commonly used algorithm for achieving consensus in distributed systems,
involving two sets of interactions between hosts known as the prepare phase and
commit phase. Because the two-phase commit locks all associated resources, it is use-
ful only for operations that can complete very quickly. Although it may often be the
case that your distributed operations can complete in subsecond time, it is certainly
not always the case. Some use cases require coordination between multiple hosts that
you may not control yourself. Operations coordinating several different but related
activities can take hours to update.

Two-phase commit blocks; that is, clients (“‘competing consumers”) must wait for a
prior transaction to finish before they can access the blocked resource. The protocol
will wait for a node to respond, even if it has died. It’s possible to avoid waiting for-
ever in this event, because a timeout can be set that allows the transaction coordinator
node to decide that the node isn’t going to respond and that it should abort the trans-
action. However, an infinite loop is still possible with 2PC; that’s because a node can
send a message to the transaction coordinator node agreeing that it’s OK for the coor-
dinator to commit the entire transaction. The node will then wait for the coordinator
to send a commit response (or a rollback response if, say, a different node can’t com-
mit); if the coordinator is down in this scenario, that node conceivably will wait for-
ever.

So in order to account for these shortcomings in two-phase commit of distributed
transactions, the database world turned to the idea of compensation. Compensation,
often used in web services, means in simple terms that the operation is immediately
committed, and then in the event that some error is reported, a new operation is
invoked to restore proper state.

There are a few basic, well-known patterns for compensatory action that architects
frequently have to consider as an alternative to two-phase commit. These include
writing off the transaction if it fails, deciding to discard erroneous transactions and
reconciling later. Another alternative is to retry failed operations later on notification.
In a reservation system or a stock sales ticker, these are not likely to meet your
requirements. For other kinds of applications, such as billing or ticketing applica-
tions, this can be acceptable.

8 | Chapter 1: Beyond Relational Databases



The Problem with Two-Phase Commit

Gregor Hohpe, a Google architect, wrote a wonderful and often-
cited blog entry called “Starbucks Does Not Use Two-Phase Com-
mit”. It shows in real-world terms how difficult it is to scale two-
phase commit and highlights some of the alternatives that are
mentioned here. It’s an easy, fun, and enlightening read. If youre
interested in digging deeper, Martin Kleppman's comprehensive
book Designing Data-Intensive Applications (O’'Reilly) contains an
excellent in-depth discussion of two-phase commit and other con-
sensus algorithms.

The problems that 2PC introduces for application developers include loss of availabil-
ity and higher latency during partial failures. Neither of these is desirable. So once
you've had the good fortune of being successful enough to necessitate scaling your
database past a single machine, you now have to figure out how to handle transac-
tions across multiple machines and still make the ACID properties apply. Whether
you have 10 or 100 or 1,000 database machines, atomicity is still required in transac-
tions as if you were working on a single node. But it's now a much, much bigger pill
to swallow.

Schema

One often-lauded feature of relational database systems is the rich schemas they
afford. You can represent your domain objects in a relational model. A whole indus-
try has sprung up around (expensive) tools such as the CA ERwin Data Modeler to
support this effort. In order to create a properly normalized schema, however, you are
forced to create tables that don't exist as business objects in your domain. For exam-
ple, a schema for a university database might require a “student” table and a “course”
table. But because of the “many-to-many” relationship here (one student can take
many courses at the same time, and one course has many students at the same time),
you have to create a join table. This pollutes a pristine data model, where youd prefer
to just have students and courses. It also forces you to create more complex SQL
statements to join these tables together. The join statements, in turn, can be slow.

Again, in a system of modest size, this isn’t much of a problem. But complex queries
and multiple joins can become burdensomely slow once you have a large number of
rows in many tables to handle.

Finally, not all schemas map well to the relational model. One type of system that has
risen in popularity in the last decade is the complex event processing system or stream
processing system, which represents state changes in a very fast stream. It’s often useful
to contextualize events at runtime against other events that might be related in order
to infer some conclusion to support business decision-making. Although event

A Quick Review of Relational Databases | 9


https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://shop.oreilly.com/product/0636920032175.do

streams can be represented in terms of a relational database, as with Apache Kafka’s
KSQL, it is often an uncomfortable stretch.

If youre an application developer, you'll no doubt be familiar with the many object-
relational mapping (ORM) frameworks that have sprung up in recent years to help
ease the difficulty in mapping application objects to a relational model. Again, for
small systems, ORM can be a relief. But it also introduces new problems of its own,
such as extended memory requirements, and it often pollutes the application code
with increasingly unwieldy mapping code. Here’s an example of a Java method using
Hibernate to “ease the burden” of having to write the SQL code:

@CollectionOfElements
@JoinTable(name="store_description",

joinColumns = @JoinColumn(name="store_code"))
@MapKey(columns={@Column(name="for_store",length=3)})
@Column(name="description")
private Map<String, String> getMap() {

return this.map;

}
//... etc.

Is it certain that we've done anything but move the problem here? Of course, with
some systems, such as those that make extensive use of document exchange, as with
services or XML-based applications, there are not always clear mappings to a rela-
tional database. This exacerbates the problem.

Sharding and Shared-Nothing Architecture

If you can’t split it, you can’t scale it.
—Randy Shoup, Distinguished Architect, eBay

Another way to attempt to scale a relational database is to introduce sharding to your
architecture. This has been used to good effect at large websites such as eBay, which
supports billions of SQL queries a day, and in other modern web applications. The
idea here is that you split the data so that instead of hosting all of it on a single server
or replicating all of the data on all of the servers in a cluster, you divide up portions of
the data horizontally and host them each separately.

For example, consider a large customer table in a relational database. The least dis-
ruptive thing (for the programming staff, anyway) is to vertically scale by adding
CPU, adding memory, and getting faster hard drives, but if you continue to be suc-
cessful and add more customers, at some point (perhaps into the tens of millions of
rows), you'll likely have to start thinking about how you can add more machines.
When you do so, do you just copy the data so that all of the machines have it? Or do
you instead divide up that single customer table so that each database has only some
of the records, with their order preserved? Then, when clients execute queries, they
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put load only on the machine that has the record they’re looking for, with no load on
the other machines.

It seems clear that in order to shard, you need to find a good key by which to order
your records. For example, you could divide your customer records across 26
machines, one for each letter of the alphabet, with each hosting only the records for
customers whose last names start with that particular letter. It's likely this is not a
good strategy, however—there probably aren’t many last names that begin with “Q”
or “Z) so those machines will sit idle while the “J” “M,” and “S” machines spike. You
could shard according to something numeric, like phone number, “member since”
date, or the name of the customer’s state. It all depends on how your specific data is
likely to be distributed.

There are three basic strategies for determining shard structure:

Feature-based shard or functional segmentation

This is the approach taken by Randy Shoup, Distinguished Architect at eBay,
who in 2006 helped bring the site’s architecture into maturity to support many
billions of queries per day. Using this strategy, the data is split not by dividing
records in a single table (as in the customer example discussed earlier), but rather
by splitting into separate databases the features that don’t overlap with each other
very much. For example, at eBay, the users are in one shard, and the items for
sale are in another. This approach depends on understanding your domain so
that you can segment data cleanly.

Key-based sharding
In this approach, you find a key in your data that will evenly distribute it across
shards. So instead of simply storing one letter of the alphabet for each server as in
the (naive and improper) earlier example, you use a one-way hash on a key data
element and distribute data across machines according to the hash. It is common
in this strategy to find time-based or numeric keys to hash on.

Lookup table
In this approach, also known as directory-based sharding, one of the nodes in the
cluster acts as a “Yellow Pages” directory and looks up which node has the data
you're trying to access. This has two obvious disadvantages. The first is that you’ll
take a performance hit every time you have to go through the lookup table as an
additional hop. The second is that the lookup table not only becomes a bottle-
neck, but a single point of failure.

Sharding can minimize contention depending on your strategy and allows you not
just to scale horizontally, but then to scale more precisely, as you can add power to
the particular shards that need it.

Sharding could be termed a kind of shared-nothing architecture that’s specific to data-
bases. A shared-nothing architecture is one in which there is no centralized (shared)
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state, but each node in a distributed system is independent, so there is no client con-
tention for shared resources.

Shared-nothing architecture was more recently popularized by Google, which has
written systems such as its Bigtable database and its MapReduce implementation that
do not share state, and are therefore capable of near-infinite scaling. The Cassandra
database is a shared-nothing architecture, as it has no central controller and no
notion of primary/secondary replicas; all of its nodes are the same.

More on Shared-Nothing Architecture

The term was first coined by Michael Stonebraker at the University
of California at Berkeley in his 1986 paper “The Case for Shared
Nothing” You can read the paper online at http://db.cs.berkeley.edu/
papers/hpts85-nothing.pdf. It’s only a few pages. If you take a look,
you’'ll see that many of the features of shared-nothing distributed
data architecture, such as ease of high availability and the ability to
scale to a very large number of machines, are the very things that
Cassandra excels at.

Many nonrelational databases offer this automatically and out of the box is very
handy; creating and maintaining custom data shards by hand is a wicked proposition.
For example, MongoDB, which we’ll discuss below, provides auto-sharding capabili-
ties to manage failover and node balancing. It's good to understand sharding in terms
of data architecture in general, but especially in terms of Cassandra more specifically.
Cassandra uses an approach similar to key-based sharding to distribute data across
nodes, but does so automatically.

Web Scale

In summary, relational databases are very good at solving certain data storage prob-
lems, but because of their focus, they also can create problems of their own when it’s
time to scale. Then, you often need to find a way to get rid of your joins, which means
denormalizing the data, which means maintaining multiple copies of data and seri-
ously disrupting your design, both in the database and in your application. Further,
you almost certainly need to find a way around distributed transactions, which will
quickly become a bottleneck. These compensatory actions are not directly supported
in any but the most expensive RDBMSs. And even if you can write such a huge check,
you still need to carefully choose partitioning keys to the point where you can never
entirely ignore the limitation.

Perhaps more importantly, as you see some of the limitations of RDBMSs and conse-
quently some of the strategies that architects have used to mitigate their scaling
issues, a picture slowly starts to emerge. It’s a picture that makes some NoSQL solu-
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tions seem perhaps less radical and less scary than you may have thought at first, and
more like a natural expression and encapsulation of some of the work that was
already being done to manage very large databases.

Because of some of the inherent design decisions in RDBMSs, it is not always as easy
to scale as some other, more recent possibilities that take the structure of the Web into
consideration. However, it’s not only the structure of the Web you need to consider,
but also its phenomenal growth, because as more and more data becomes available,
you need architectures that allow your organization to take advantage of this data in
near real time to support decision-making, and to offer new and more powerful fea-
tures and capabilities to your customers.

Data Scale, Then and Now

It has been said, though it is hard to verify, that the 17th-century
English poet John Milton had actually read every published book
on the face of the earth. Milton knew many languages (he was even
learning Navajo at the time of his death), and given that the total
number of published books at that time was in the thousands, this
would have been possible. The size of the world’s data stores have
grown somewhat since then.

With the rapid growth in the web, there is great variety to the kinds of data that need
to be stored, processed, and queried, and some variety to the businesses that use such
data. Consider not only customer data at familiar retailers or suppliers, and not only
digital video content, but also the required move to digital television and the explo-
sive growth of email, messaging, mobile phones, RFID, Voice Over IP (VoIP) usage,
and the Internet of Things (IoT). Companies that provide content—and the third-
party value-add businesses built around them—require very scalable data solutions.
Consider too that a typical business application developer or database administrator
may be used to thinking of relational databases as the center of the universe. You
might then be surprised to learn that within corporations, around 80% of data is
unstructured.

The Rise of NoSQL

The recent interest in nonrelational databases reflects the growing sense of need in
the software development community for web scale data solutions. The term
“NoSQL” began gaining popularity around 2009 as a shorthand way of describing
these databases. The term has historically been the subject of much debate, but a con-
sensus has emerged that the term refers to nonrelational databases that support “not
only SQL” semantics.
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Various experts have attempted to organize these databases in a few broad categories;
let’s examine a few of the most common:

Key-value stores
In a key-value store, the data items are keys that have a set of attributes. All data
relevant to a key is stored with the key; data is frequently duplicated. Popular
key-value stores include Amazons Dynamo DB, Riak, and Voldemort. Addition-
ally, many popular caching technologies act as key-value stores, including Oracle
Coherence, Redis, and Memcached.

Column stores
In a column store, also known as a wide-column store or column-oriented store,
data is stored by column rather than by row. For example, in a column store, all
customer addresses might be stored together, allowing . Popular column stores
include Apache Hadoops HBase, Apache Kudu, and Apache Druid.

Document stores
The basic unit of storage in a document database is the complete document,
often stored in a format such as JSON, XML, or YAML. Popular document stores
include MongoDB, CouchDB, and several public cloud offerings.

Graph databases
Graph databases represent data as a graph—a network of nodes and edges that
connect the nodes. Both nodes and edges can have properties. Because they give
heightened importance to relationships, graph databases such as Neo4j, Janus-
Graph, and DataStax Graph have proven popular for building social networking
and semantic web applications.

Object databases

Object databases store data not in terms of relations and columns and rows, but
in terms of objects as understood from the discipline of object-oriented program-
ming. This makes it straightforward to use these databases from object-oriented
applications. Object databases such as db4o and InterSystems Caché allow you to
avoid techniques like stored procedures and object-relational mapping (ORM)
tools. The most widely used object database is Amazon Web Services’ Simple
Storage Service (S3).

XML databases
XML databases are a special form of document databases, optimized specifically
for working with data described in the eXtensible Markup Language (XML). So-
called “XML native” databases include BaseX and eXist.

Multimodel databases
Databases that support more than one of these styles have been growing in popu-
larity. These “multimodel” databases are based on a primary underlying database
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(most often a relational, key-value, or column store) and expose additional mod-
els as APIs on top of that underlying database. Examples of these include Micro-
soft Azure Cosmos DB, which exposes document, wide column, and graph APIs
on top of a key-value store, and DataStax Enterprise, which offers a graph API on
top of Cassandra’s wide column model. Multimodel databases are often touted
for their ability to support an approach known as polyglot persistence, in which
different microservices or components of an application can interact with data
using more than one of the models we've described here. We'll discuss an exam-
ple of polyglot persistence in Chapter 7.

Learning More About NoSQL Databases

For a comprehensive list of NoSQL databases, see the site http://
nosql-database.org. The DB-Engines site also provides popularity
rankings of popular databases by type and overall, updated
monthly at https://db-engines.com/en/ranking.

There is wide variety in the goals and features of these databases, but they tend to
share a set of common characteristics. The most obvious of these is implied by the
name NoSQL—these databases support data models, data definition languages
(DDLs), and interfaces beyond the standard SQL available in popular relational data-
bases. In addition, these databases are typically distributed systems without central-
ized control. They emphasize horizontal scalability and high availability, in some
cases at the cost of strong consistency and ACID semantics. They tend to support
rapid development and deployment. They take flexible approaches to schema defini-
tion, in some cases not requiring any schema to be defined up front. They provide
support for Big Data and analytics use cases.

Over the past decade, there have been a large number of open source and commercial
offerings in the NoSQL space. The adoption and quality of these have varied widely,
but leaders have emerged in the categories just discussed, and many have become
mature technologies with large installation bases and commercial support. Were
happy to report that Cassandra is one of those technologies, as we'll dig into more in
the next chapter.

New Relational Architectures and NewSQL

Many of the challenges with previous approaches to scale relational databases that
we've described in this chapter can be attributed to designs that attempted to graft dis-
tributed systems principles on top of existing database engines, with generally unsat-
isfactory results.

In response to the criticisms of traditional RDBMS that we've summarized in this
chapter, database researchers began to explore new approaches for creating more
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scalable relational systems. In 2012, two key papers were published, proposing new
approaches for providing transactional guarantees at scale. First, the Calvin transac-
tion protocol developed at Yale University described an approach based on a global
consensus protocol used by all transactions on a database. You can read this paper at
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf. FaunaDB is an
example of a database that implements the approach on the Calvin paper.

Google’s Spanner paper, published a couple of months later, proposed an approach in
which the database is divided into shards and a separate consensus protocol is applied
to shards to support transactional guarantees. You can read this paper at https://
static.googleusercontent.com/media/research.google.com/en//archive/spanner-
0sdi2012.pdf. Google Cloud Spanner, CockroachDB, and YugaByteDB are examples of
databases that follow this approach.

Don’t worry if the references to consistency don’t make sense yet; we'll dive into this
more in “Brewer’s CAP Theorem” on page 23. The main takeaway for now is that
these so called NewSQL databases were designed from the ground up to support
ACID transaction semantics at scale. Note that the reference to SQL is possibly mis-
leading, as not all of these databases provide full ANSI SQL support.

S

ummary

The relational model has served the software industry well over the past four decades,
but the level of availability and scalability required for modern applications has
stretched traditional relational database technology to the breaking point.

The intention of this book is not to convince you by clever argument to adopt a non-
relational database such as Apache Cassandra. It is only our intention to present what
Cassandra can do and how it does it so that you can make an informed decision and
get started working with it in practical ways if you find it applies.

Perhaps the ultimate question, then, is not “What’s Wrong with Relational Data-
bases?” on page 1 but rather, “What kinds of things would I do with data if it wasn’t a
problem?” In a world now working at web scale and looking to the future, Apache
Cassandra might be one part of the answer.
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CHAPTER 2
Introducing Cassandra

An invention has to make sense in the world in which it is finished, not the world in
which it is started.

—Ray Kurzweil

In the previous chapter, we discussed the emergence of nonrelational database tech-
nologies in order to meet the increasing demands of modern web scale applications.
In this chapter, we'll focus on Cassandra’s value proposition and key tenets to show
how it rises to the challenge. You'll also learn about Cassandra’s history and how you
can get involved in the open source community that maintains Cassandra.

The Cassandra Elevator Pitch

Hollywood screenwriters and software entrepreneurs are often advised to have their
“elevator pitch” ready. This is a summary of exactly what their product is all about—
concise, clear, and brief enough to deliver in just a minute or two, in the lucky event
that they find themselves sharing an elevator with an executive, agent, or investor
who might consider funding their project. Cassandra has a compelling story, so lets
boil it down to an elevator pitch that you can present to your manager or colleagues
should the occasion arise.

Cassandra in 50 Words or Less

“Apache Cassandra is an open source, distributed, decentralized, elastically scalable,
highly available, fault-tolerant, tuneably consistent, row-oriented database. Cassandra
bases its distribution design on Amazons Dynamo and its data model on Google’s
Bigtable, with a query language similar to SQL. Created at Facebook, it now powers
cloud-scale applications across many industries.” That’s exactly 50 words.
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Of course, if you were to recite that to your boss in the elevator, youd probably get a
blank look in return. So let’s break down the key points in the following sections.

Distributed and Decentralized

Cassandra is distributed, which means that it is capable of running on multiple
machines while appearing to users as a unified whole. In fact, there is little point in
running a single Cassandra node. Although you can do it, and that’s acceptable for
getting up to speed on how it works, you quickly realize that you'll need multiple
machines to really realize any benefit from running Cassandra. Much of its design
and code base is specifically engineered toward not only making it work across many
different machines, but also for optimizing performance across multiple data center
racks, and even for a single Cassandra cluster running across geographically dis-
persed data centers. You can confidently write data to anywhere in the cluster and
Cassandra will get it.

Once you start to scale many other data stores (MySQL, Bigtable), some nodes need
to be set up as primary replicas in order to organize other nodes, which are set up as
secondary replicas. Cassandra, however, is decentralized, meaning that every node is
identical; no Cassandra node performs certain organizing operations distinct from
any other node. Instead, Cassandra features a peer-to-peer architecture and uses a
gossip protocol to maintain and keep in sync a list of nodes that are alive or dead.
We'll discuss this more in “Gossip and Failure Detection” on page 112.

The fact that Cassandra is decentralized means that there is no single point of failure.
All of the nodes in a Cassandra cluster function exactly the same. This is sometimes
referred to as “server symmetry.” Because they are all doing the same thing, by defini-
tion there can’t be a special host that is coordinating activities, as with the primary/
secondary setup that you see in MySQL, Bigtable, and so many other databases.

In many distributed data solutions (such as RDBMS clusters), you set up multiple
copies of data on different servers in a process called replication, which copies the
data to multiple machines so that they can all serve simultaneous requests and
improve performance. Typically this process is not decentralized, as in Cassandra, but
is rather performed by defining a primary/secondary relationship. That is, all of the
servers in this kind of cluster don't function in the same way. You configure your
cluster by designating one server as the primary (or primary replica) and others as
secondary replicas. The primary replica acts as the authoritative source of the data,
and operates in a unidirectional relationship with the secondary replicas, which must
synchronize their copies. If the primary node fails, the whole database is in jeopardy.
To work around the situation of the primary as a single point of failure, you often
need to add complexity to the environment in the form of multiple primary nodes.
Note that while we frequently understand primary/secondary replication in the
RDBMS world, there are NoSQL databases such as MongoDB that follow the pri-
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mary/secondary scheme as well. Even Mongo’s “replica set” mechanism is essentially
a primary/secondary scheme in which the primary can be replaced by an automated
leader election process.

Decentralization, therefore, has two key advantages: it’s simpler to use than primary/
secondary, and it helps you avoid outages. It is simpler to operate and maintain a
decentralized store than a primary/secondary store because all nodes are the same.
That means that you don’t need any special knowledge to scale; setting up 50 nodes
ism’t much different from setting up one. There’s next to no configuration required to
support it. Because all of the replicas in Cassandra are identical, failures of a node
won't disrupt service.

In short, because Cassandra is distributed and decentralized, there is no single point
of failure, which supports high availability.

Elastic Scalability

Scalability is an architectural feature of a system that can continue serving a greater
number of requests with little degradation in performance. Vertical scaling—simply
adding more processing capacity and memory to your existing machine—is the easi-
est way to achieve this. Horizontal scaling means adding more machines that have all
or some of the data on them so that no one machine has to bear the entire burden of
serving requests. But then the software itself must have an internal mechanism for
keeping its data in sync with the other nodes in the cluster.

Elastic scalability refers to a special property of horizontal scalability. It means that
your cluster can seamlessly scale up and scale back down. To do this, the cluster must
be able to accept new nodes that can begin participating by getting a copy of some or
all of the data and start serving new user requests without major disruption or recon-
figuration of the entire cluster. You don’t have to restart your process. You don’'t have
to change your application queries. You don't have to manually rebalance the data
yourself. Just add another machine—Cassandra will find it and start sending it work.

Scaling down, of course, means removing some of the processing capacity from your
cluster. You might do this for business reasons, such as adjusting to seasonal work-
loads in retail or travel applications. Or perhaps there will be technical reasons such
as moving parts of your application to another platform. As much as we try to mini-
mize these situations, they still happen. But when they do, you won’t need to upset the
entire apple cart to scale back.

High Availability and Fault Tolerance

In general architecture terms, the availability of a system is measured according to its
ability to fulfill requests. But computers can experience all manner of failure, from
hardware component failure to network disruption to corruption. Any computer is
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susceptible to these kinds of failure. There are of course very sophisticated (and often
prohibitively expensive) computers that can themselves mitigate many of these cir-
cumstances, as they include internal hardware redundancies and facilities to send
notification of failure events and hot swap components. But anyone can accidentally
break an Ethernet cable, and catastrophic events can beset a single data center. So for
a system to be highly available, it must typically include multiple networked comput-
ers, and the software they’re running must then be capable of operating in a cluster
and have some facility for recognizing node failures and failing over requests to
another part of the system.

Cassandra is highly available. You can replace failed nodes in the cluster with no
downtime, and you can replicate data to multiple data centers to offer improved local
performance and prevent downtime if one data center experiences a catastrophe such
as fire or flood.

Tuneable Consistency

Consistency is an overloaded term in the database world, but for our purposes we will
use the definition that a read always returns the most recently written value. Consider
the case of two customers attempting to put the same item into their shopping carts
on an ecommerce site. If I place the last item in stock into my cart an instant after you
do, you should get the item added to your cart, and I should be informed that the
item is no longer available for purchase. This is guaranteed to happen when the state
of a write is consistent among all nodes that have that data.

But as we'll see later, scaling data stores means making certain trade-offs among data
consistency, node availability, and partition tolerance. Cassandra is frequently called
“eventually consistent,” which is a bit misleading. Out of the box, Cassandra trades
some consistency in order to achieve total availability. But Cassandra is more accu-
rately termed “tuneably consistent,” which means it allows you to easily decide the
level of consistency you require, in balance with the level of availability.

Lets take a moment to unpack this, as the term “eventual consistency” has caused
some uproar in the industry. Some practitioners hesitate to use a system that is
described as “eventually consistent”

For detractors of eventual consistency, the broad argument goes something like this:
eventual consistency is maybe OK for social web applications where data doesn’t
really matter. After all, you're just posting to Mom what little Billy ate for breakfast,
and if it gets lost, it doesn't really matter. But the data I have is actually really impor-
tant, and it’s ridiculous to think that I could allow eventual consistency in my model.

Set aside the number of large-scale web applications (Amazon, Facebook, Google,
Twitter) that use this model, and perhaps there’s something to this argument. Pre-
sumably such data is very important indeed to the companies running these applica-
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tions, because that data is their primary product, and they are multibillion-dollar
companies with billions of users to satisfy in a sharply competitive world. It may be
possible to gain guaranteed, immediate, and perfect consistency throughout a highly
trafticked system running in parallel on a variety of networks, but if you want clients
to get their results sometime this year, it’s a very tricky proposition.

The detractors claim that databases like Cassandra have merely eventual consistency,
and that all other distributed systems have strict consistency. As with so many things
in the world, however, the reality is not so black and white, and the binary opposition
between consistent and not-consistent is not truly reflected in practice. There are
instead degrees of consistency, and in the real world they are very susceptible to exter-
nal circumstance.

Eventual consistency is one of several consistency models available to architects. Let’s
take a look at these models so we can understand the trade-offs:

Strict consistency

This is sometimes called sequential consistency, and is the most stringent level of
consistency. It requires that any read will always return the most recently written
value. That sounds perfect, and it’s exactly what ’'m looking for. I'll take it! How-
ever, upon closer examination, what do we find? What precisely is meant by
“most recently written”? Most recently to whom? In one single-processor
machine, this is no problem to observe, as the sequence of operations is known
to the one clock. But in a system executing across a variety of geographically dis-
persed data centers, it becomes much more slippery. Achieving this implies some
sort of global clock that is capable of timestamping all operations, regardless of
the location of the data or the user requesting it or how many (possibly disparate)
services are required to determine the response.

Causal consistency

This is a slightly weaker form of strict consistency. It does away with the fantasy
of the single global clock that can magically synchronize all operations without
creating an unbearable bottleneck. Instead of relying on timestamps, causal con-
sistency takes a more semantic approach, attempting to determine the cause of
events to create some consistency in their order. It means that writes that are
potentially related must be read in sequence. If two different, unrelated opera-
tions suddenly write to the same field at the same time, then those writes are
inferred not to be causally related. But if one write occurs after another, we might
infer that they are causally related. Causal consistency dictates that causal writes
must be read in sequence.

Weak (eventual) consistency
Eventual consistency means on the surface that all updates will propagate
throughout all of the replicas in a distributed system, but that this may take some
time. Eventually, all replicas will be consistent.
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Eventual consistency becomes suddenly very attractive when you consider what is
required to achieve stronger forms of consistency.

When considering consistency, availability, and partition tolerance, we can achieve
only two of these goals in a given distributed system, a trade-off known as the CAP
theorem (we explore this theorem in more depth in “Brewer’s CAP Theorem” on
page 23). At the center of the problem is data update replication. To achieve a strict
consistency, all update operations will be performed synchronously, meaning that
they must block, locking all replicas until the operation is complete, and forcing com-
peting clients to wait. A side effect of such a design is that during a failure, some of
the data will be entirely unavailable. As Amazon CTO Werner Vogels puts it, “rather
than dealing with the uncertainty of the correctness of an answer, the data is made
unavailable until it is absolutely certain that it is correct.™

We could alternatively take an optimistic approach to replication, propagating
updates to all replicas in the background in order to avoid blowing up on the client.
The difficulty this approach presents is that now we are forced into the situation of
detecting and resolving conflicts. A design approach must decide whether to resolve
these conflicts at one of two possible times: during reads or during writes. That is, a
distributed database designer must choose to make the system either always readable
or always writable.

Dynamo and Cassandra choose to be always writable, opting to defer the complexity
of reconciliation to read operations, and realize tremendous performance gains. The
alternative is to reject updates amidst network and server failures.

In Cassandra, consistency is not an all-or-nothing proposition. A more accurate term
is “tuneable consistency” because the client can control the number of replicas to
block on for all updates. This is done by setting the consistency level against the repli-
cation factor.

You set the replication factor to the number of nodes in the cluster you want the
updates to propagate to (remember that an update means any add, update, or delete
operation).

The consistency level is a setting that clients must specify on every operation and that
allows you to decide how many replicas in the cluster must acknowledge a write oper-
ation or respond to a read operation in order to be considered successful. That’s the
part where Cassandra has pushed the decision for determining consistency out to the
client.

So if you like, you could set the consistency level to a number equal to the replication
factor, and gain stronger consistency at the cost of synchronous blocking operations

1 “Dynamo: Amazon’s Highly Distributed Key-Value Store”.
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that wait for all nodes to be updated and declare success before returning. This is not
often done in practice with Cassandra, however, for reasons that should be clear (it
defeats the availability goal, would impact performance, and generally goes against
the grain of why youd want to use Cassandra in the first place). So if the client sets
the consistency level to a value less than the replication factor, the update is consid-
ered successful even if some nodes are down.

Brewer’s CAP Theorem

In order to understand Cassandras design and its label as an “eventually consistent”
database, we need to understand the CAP theorem. The CAP theorem is sometimes
called Brewer’s theorem after its author, Eric Brewer.

While working at the University of California at Berkeley, Eric Brewer posited his
CAP theorem in 2000 at the ACM Symposium on the Principles of Distributed Com-
puting. The theorem states that within a large-scale distributed data system, there are
three requirements that have a relationship of sliding dependency:

Consistency
All database clients will read the same value for the same query, even given con-
current updates.

Availability
All database clients will always be able to read and write data.

Partition tolerance
The database can be split into multiple machines; it can continue functioning in
the face of network segmentation breaks.

Brewer’s theorem is that in any given system, you can strongly support only two of
the three. This is analogous to the saying you may have heard in software develop-
ment: “You can have it good, you can have it fast, you can have it cheap: pick two”

We have to choose between them because of this sliding mutual dependency. The
more consistency you demand from your system, for example, the less partition-
tolerant you're likely to be able to make it, unless you make some concessions around
availability.

The CAP theorem was formally proved to be true by Seth Gilbert and Nancy Lynch
of MIT in 2002. In distributed systems, however, it is very likely that you will have
network partitioning, and that at some point, machines will fail and cause others to
become unreachable. Networking issues such as packet loss or high latency are nearly
inevitable and have the potential to cause temporary partitions. This leads us to the
conclusion that a distributed system must do its best to continue operating in the face
of network partitions (to be partition tolerant), leaving us with only two real options
to compromise on: availability and consistency.
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Figure 2-1 illustrates visually that there is no overlapping segment where all three are
obtainable.

Available

Partition-Tolerant

Figure 2-1. CAP theorem indicates that you can realize only two of these properties at
once

It might prove useful at this point to see a graphical depiction of where each of the
nonrelational data stores we'll look at falls within the CAP spectrum. The graphic in
Figure 2-2 was inspired by a slide in a 2009 talk given by Dwight Merriman, CEO and
founder of MongoDB, to the MySQL User Group in New York City. However, we
have modified the placement of some systems based on research.
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Relational:
MySQL, SQL Server,
Postgres

Amazon Dynamo derivatives:
Cassandra, Voldemort,
CouchDB, Riak

Neo4), Google Bigtable, and
Bigtable derivatives: MongoDB HBase,
Hypertable, Redis

Figure 2-2. Where different databases appear on the CAP continuum

Figure 2-2 shows the general focus of some of the different databases we discuss in
this chapter. Note that placement of the databases in this chart could change based on
configuration. As Stu Hood points out, a distributed MySQL database can count as a
consistent system only if youre using Google’s synchronous replication patches;
otherwise, it can only be available and partition tolerant (AP).

It’s interesting to note that the design of the system around CAP placement is inde-
pendent of the orientation of the data storage mechanism; for example, the CP edge is
populated by graph databases and document-oriented databases alike.

In this depiction, relational databases are on the line between consistency and availa-
bility, which means that they can fail in the event of a network failure (including a
cable breaking). This is typically achieved by defining a single primary replica, which
could itself go down, or an array of servers that simply don't have sufficient mecha-
nisms built in to continue functioning in the case of network partitions.
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Graph databases such as Neo4j and the set of databases derived at least in part from
the design of Google’s Bigtable database (such as MongoDB, HBase, Hypertable, and
Redis) all are focused slightly less on availability and more on ensuring consistency
and partition tolerance.

Finally, the databases derived from Amazon’s Dynamo design include Cassandra,
Project Voldemort, CouchDB, and Riak. These are more focused on availability and
partition tolerance. However, this does not mean that they dismiss consistency as
unimportant, any more than Bigtable dismisses availability. According to the Bigtable
paper, the average percentage of server hours that “some data” was unavailable is
0.0047% (section 4), so this is relative, as were talking about very robust systems
already. If you think of each of these letters (C, A, P) as knobs you can tune to arrive
at the system you want, Dynamo derivatives are intended for employment in the
many use cases where “eventual consistency” is tolerable and where “eventual” is a
matter of milliseconds, read repairs mean that reads will return consistent values, and
you can achieve strong consistency if you want to.

So what does it mean in practical terms to support only two of the three facets of
CAP?

CA
To primarily support consistency and availability means that you're likely using
two-phase commit for distributed transactions. It means that the system will
block when a network partition occurs, so it may be that your system is limited to
a single data center cluster in an attempt to mitigate this. If your application
needs only this level of scale, this is easy to manage and allows you to rely on
familiar, simple structures.

cp
To primarily support consistency and partition tolerance, you may try to advance
your architecture by setting up data shards in order to scale. Your data will be

consistent, but you still run the risk of some data becoming unavailable if nodes
fail.

AP
To primarily support availability and partition tolerance, your system may return
inaccurate data, but the system will always be available, even in the face of net-
work partitioning. DNS is perhaps the most popular example of a system that is
massively scalable, highly available, and partition tolerant.

Note that this depiction is intended to offer an overview that helps draw distinctions
between the broader contours in these systems; it is not strictly precise. For example,
it’s not entirely clear where Google’s Bigtable should be placed on such a continuum.
The Google paper describes Bigtable as “highly available,” but later goes on to say that
if Chubby (the Bigtable persistent lock service) “becomes unavailable for an extended
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period of time [caused by Chubby outages or network issues], Bigtable becomes
unavailable” (section 4). On the matter of data reads, the paper says that “we do not
consider the possibility of multiple copies of the same data, possibly in alternate
forms due to views or indices” Finally, the paper indicates that “centralized control
and Byzantine fault tolerance are not Bigtable goals” (section 10). Given such variable
information, you can see that determining where a database falls on this sliding scale
is not an exact science.

The CAP Theorem—An Ongoing Conversation

In February 2012, Eric Brewer provided an updated perspective on his CAP theorem
in the article “CAP Twelve Years Later: How the “Rules” Have Changed” in IEEE’s
Computer. Brewer now describes the “pick two” axiom as somewhat misleading. He
notes that designers only need sacrifice consistency or availability in the presence of
partitions, and that advances in partition recovery techniques have made it possible
for designers to achieve high levels of both consistency and availability.

These advances in partition recovery certainly would include Cassandras usage of
mechanisms such as hinted handoff and read repair. We'll explore these in Chapter 6.
However, it is important to recognize that these partition recovery mechanisms are
not infallible. There is still immense value in Cassandra’s tuneable consistency, allow-
ing Cassandra to function effectively in a diverse set of deployments in which it is not
possible to completely prevent partitions.

In recent years Eric Brewer has joined the Google Cloud Platform team. In his 2017
blog post “Inside Cloud Spanner and the CAP Theorem”, he evaluates Google Span-
ner in terms of the CAP theorem. While Brewer cites the high availability of Google’s
infrastructure as a justification for arguing that Spanner effectively behaves as a CA
system, he acknowledges that since partitions still occasionally occur, it is technically
a CP system.

Row-Oriented

Cassandra’s data model can be described as a partitioned row store, in which data is
stored in sparse multidimensional hashtables. “Sparse” means that for any given row
you can have one or more columns, but each row doesn’t need to have all the same
columns as other rows like it (as in a relational model). “Partitioned” means that each
row has a unique partition key used to distribute the rows across multiple data stores.
Somewhat confusingly, this type of data model is also frequently referred to as a wide
column store, for example by the DB-Engines website.
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Row-Oriented Versus Column-Oriented

Cassandra has frequently been referred to as a column-oriented or
columnar database, but this is not technically correct. The mistake
is based on confusion between similar sounding terms. A column-
oriented database is one in which the data is stored by columns, as
opposed to relational databases, which store data in rows (hence
the term row-oriented). Column-oriented databases such as Apache
HBase or Apache Kudu are designed for analytic use cases.

In the relational storage model, all of the columns for a table are defined beforehand
and space is allocated for each column whether it is populated or not. In contrast,
Cassandra stores data in a multidimensional, sorted hash table. As data is stored in
each column, it is stored as a separate entry in the hash table. Column values are
stored according to a consistent sort order, omitting columns that are not populated,
which enables more efficient storage and query processing. We'll examine Cassandra’s
data model in more detail in Chapter 4.

Is Cassandra “Schema-Free”?

In its early versions. Cassandra was faithful to the original Bigtable whitepaper in
supporting a “schema-free” data model in which new columns can be defined dynam-
ically. Schema-free databases such as Bigtable and MongoDB have the advantage of
being very extensible and highly performant in accessing large amounts of data. The
major drawback of schema-free databases is the difficulty in determining the meaning
and format of data, which limits the ability to perform complex queries. These disad-
vantages proved a barrier to adoption for many, especially as startup projects which
benefitted from the initial flexibility matured into more complex enterprises involv-
ing multiple developers and administrators.

The solution for those users was the introduction of the Cassandra Query Language
(CQL), which provides a way to define schema via a syntax similar to the Structured
Query Language (SQL) familiar to those coming from a relational background. Ini-
tially, CQL was provided as another interface to Cassandra alongside the schema-free
interface based on the Apache Thrift project. During this transitional phase, the term
“schema-optional” was used to describe that data models could be defined by schema
using CQL, but could also be dynamically extended to add new columns via the
Thrift API. During this period, the underlying data storage continued to be based on
the Bigtable model.

For the 3.0 release, Cassandra’s underlying storage was re-implemented to more
closely align with CQL. The Thrift-based API that supported dynamic column cre-
ation was marked as deprecated in 3.0, and removed entirely in the 4.0 release. Cas-
sandra does not entirely limit the ability to dynamically extend the schema on the fly,
but the way it works is significantly different. CQL collections such as lists, sets, and
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maps provide the ability to add a variable number of values of a given type. CQL also
provides the ability to change the type of columns in certain instances, and facilities
to support the storage of JSON-formatted text.

So perhaps the best way to describe Cassandras current posture is that it supports
“flexible schema.”

High Performance

Cassandra was designed specifically from the ground up to take full advantage of
multiprocessor/multicore machines, and to run across many dozens of these
machines housed in multiple data centers. It scales consistently and seamlessly to
hundreds of terabytes. Cassandra has been shown to perform exceptionally well
under heavy load. It consistently can show very fast throughput for writes per second
on basic commodity computers, whether physical hardware or virtual machines. As
you add more servers, you can maintain all of Cassandras desirable properties
without sacrificing performance.

Where Did Cassandra Come From?

The Cassandra data store is an open source Apache project. Cassandra originated at
Facebook in 2007 to solve its inbox search problem—the company had to deal with
large volumes of data in a way that was difficult to scale with traditional methods.
Specifically, the team had requirements to handle huge volumes of data in the form of
message copies, reverse indices of messages, and many random reads and many
simultaneous random writes.

The team was led by Jeff Hammerbacher, with Avinash Lakshman, Karthik Rangana-
than, and Facebook engineer on the Search Team Prashant Malik as key engineers.
The code was released as an open source Google Code project in July 2008. During its
tenure as a Google Code project in 2008, the code was updatable only by Facebook
engineers, and little community was built around it as a result. So in March 2009, it
was moved to an Apache Incubator project, and on February 17, 2010, it was voted
into a top-level project. The committers, many of whom have been with the project
since 2010/2011, represent companies, including Twitter, LinkedIn, and Apple, as
well as independent developers.

The Paper that Introduced Cassandra to the World

“Cassandra—A Decentralized Structured Storage System” by Face-
book’s Lakshman and Malik was a central paper on Cassandra. An
updated commentary on this paper was provided by Jonathan Ellis
corresponding to the 2.0 release, noting changes to the technology
since the transition to Apache.
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How Did Cassandra Get Its Name?

In Greek mythology, Cassandra was the daughter of King Priam and Queen Hecuba
of Troy. Cassandra was so beautiful that the god Apollo gave her the ability to see the
future. But when she refused his amorous advances, he cursed her such that she
would still be able to accurately predict everything that would happen—but no one
would believe her. Cassandra foresaw the destruction of her city of Troy, but was
powerless to stop it. The Cassandra distributed database is named for her. We specu-
late that it is also named as kind of a joke on the Oracle at Delphi, another seer for
whom a database is named.

As commercial interest in Cassandra grew, the need for production support became
apparent. Jonathan Ellis, the first Apache Project Chair for Cassandra, and his collea-
gue Matt Pfeil formed a services company called DataStax (originally known as Rip-
tano) in April of 2010. DataStax provided leadership and support for the Cassandra
project, employing several Cassandra committers, as well as free products, including
Cassandra drivers for various languages and tools for development and administra-
tion of Cassandra. Paid product offerings include enterprise versions of the Cassan-
dra server and tools, integrations with other data technologies, and product support.

During the period from 2010 to 2016, the Apache Project matured Cassandra over a
series of releases from 0.6 to 3.0. While the original API provided by Cassandra was
based on Apache Thrift, the introduction of the Cassandra Query Language in the 0.8
release marked a major shift toward improved usability and developer productivity
due to its similarity with SQL known by many from their previous RDBMS experi-
ence. With the completion of a new storage engine in the 3.0 release, the Cassandra
codebase was fully aligned from top to bottom around the CQL data model.

After the 3.0 release in 2016, Nate McCall took on the role of Apache Project Chair
for Cassandra. This period has been marked by continued growth in the community,
with enterprises including Apple, Facebook/Instagram, Netflix, and Uber providing
increased contributions to the project, as well as significant contributions from con-
sultancies such as The Last Pickle and Pythian toward both the core database and
supporting tooling, and stability improvements and other bug fixes from DataStax.
These efforts have culminated in the Cassandra 4.0 release scheduled for 2020.

A well-known axiom in the software industry is that it takes 5 to 10 years for a new
database engine to reach a true battle-hardened level of maturity, and it has become
clear that Cassandra has reached this milestone. As Patrick McFadin, VP of Devel-
oper Relations at DataStax, is fond of saying, “Everyone seems to have a bit of Cas-
sandra running somewhere in their infrastructure”
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Is Cassandra a Good Fit for My Project?

We have now unpacked the elevator pitch and have an understanding of Cassandra’s
advantages. Despite Cassandra’s sophisticated design and smart features, it is not the
right tool for every job. So in this section, let’s take a quick look at what kind of
projects Cassandra is a good fit for.

Large Deployments

You probably don’t drive a semitruck to pick up your dry cleaning; semis aren’t well
suited for that sort of task. Lots of careful engineering has gone into Cassandra’s high
availability, tuneable consistency, peer-to-peer protocol, and seamless scaling, which
are its main selling points. None of these qualities is even meaningful in a single-node
deployment, let alone allowed to realize its full potential.

There are, however, a wide variety of situations where a single-node relational data-
base is all we may need. So do some measuring. Consider your expected traffic,
throughput needs, and SLAs. There are no hard-and-fast rules here, but if you expect
that you can reliably serve traffic with an acceptable level of performance with just a
few relational databases, it might be a better choice to do so, simply because RDBMSs
are easier to run on a single machine and are more familiar.

If you think you’ll need at least several nodes to support your efforts, however, Cas-
sandra might be a good fit. If your application is expected to require dozens of nodes,
Cassandra might be a great fit.

Lots of Writes, Statistics, and Analysis

Consider your application from the perspective of the ratio of reads to writes. Cassan-
dra is optimized for excellent throughput on writes.

Many of the early production deployments of Cassandra involved storing user activ-
ity updates, social network usage, recommendations/reviews, and application statis-
tics. These are strong use cases for Cassandra because they involve lots of writing
with less predictable read operations, and because updates can occur unevenly with
sudden spikes. In fact, the ability to handle application workloads that require high
performance at significant write volumes with many concurrent client threads is one
of the primary features of Cassandra.

According to the project wiki, Cassandra has been used to create a variety of applica-
tions, including a windowed time-series store, an inverted index for document
searching, and a distributed job priority queue.
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Geographical Distribution

Cassandra has out-of-the-box support for geographical distribution of data. You can
easily configure Cassandra to replicate data across multiple data centers. If you have a
globally deployed application that could see a performance benefit from putting the
data near the user, Cassandra could be a great fit.

Hybrid Cloud and Multicloud Deployment

Another benefit of Cassandra’s flexible deployment means that not only can you
deploy it across multiple data centers, these data centers can be from multiple differ-
ent providers. This makes Cassandra a great choice for a variety of different topolo-
gies. In a hybrid cloud architecture, you might use Cassandra to replicate data from a
traditional on-premises data center to data centers within your favorite public cloud
provider as part of a digital transformation effort.

Further down the road, you might adopt a multicloud architecture and leverage Cas-
sandra to replicate data between clouds in order to make that data accessible to best-
of-breed managed services offered by the top providers, such as a machine learning
service. Or perhaps you need your data accessible in multiple clouds in order to
ensure the highest possible availability for a mission-critical application. After all,
even the big public clouds have been known to have occasional region-wide outages.
The good news is that the challenging part of a multicloud Cassandra deployment is
more likely to be the network configuration, not the database.

Getting Involved

The strength and relevance of any technology depend on the investment of individu-
als in a vibrant community environment. Thankfully, the Cassandra community is
active and healthy, offering a number of ways for you to participate. The awesome-
cassandra list maintained by Rahul Singh is a great resource that provides a compre-
hensive list of Cassandra resources; we'll highlight a few items here:

Forums
Cassandra is a popular topic on forums including Stack Overflow and Quora.
DataStax maintains a community site at community.datastax.com which features
areas for both the open source project as well as DataStax products.

Mailing lists
The Apache project hosts several mailing lists to which you can subscribe to learn
about various topics of interest:

o user@cassandra.apache.org provides a general discussion list for users and is
frequently used by new users or those needing assistance.
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o dev@cassandra.apache.org is used by developers to discuss changes, prioritize
work, and approve releases.

o client-dev@cassandra.apache.org is used for discussion specific to develop-
ment of Cassandra clients for various programming languages.

o commits@cassandra.apache.org tracks Cassandra code commits. This is a
fairly high volume list and is primarily of interest to committers.

Releases are typically announced to both the developer and user mailing lists.

Chat
Many of the Cassandra developers and community members hang out in the cas
sandra and cassandra-dev channels on the Apache Software Foundation’s Slack.
This informal environment is a great place to get your questions answered or
offer up some answers of your own. You can get an invitation to join the Slack
workspace at s.apache.org/slack-invite.

Blogs
The Apache Cassandra blog provides deep-dive technical articles on Cassandra
implementation details and features under development. Other blogs that refer-
ence Cassandra frequently include the DataStax blog, the Instaclustr blog and the
Last Pickle blog.

Issues and improvements
If you encounter issues using Cassandra and feel you have discovered a defect,
feel free to submit an issue to the Cassandra JIRA. In fact, users who identify
defects on the user@cassandra.apache.org list are frequently encouraged to create
JIRA issues.

In November 2019, the Cassandra community formally approved a Cassandra
Enhancement Proposal (CEP) process to promote effective collaboration
between project contributors toward development of new features and significant
changes. You can read more about the CEP on the Apache website.

Meetups
A meetup group is a local community of people who meet face to face to discuss
topics of common interest. These groups provide an excellent opportunity to
network, learn, or share your knowledge by offering a presentation of your own.
There are Cassandra meetups on every continent, so you stand a good chance of
being able to find one in your area.

Conferences
Cassandra is a popular topic at the ApacheCon conferences hosted by the Apache
Software Foundation, as well as the Strata Data Conferences hosted by O’Reilly.
The Cassandra Project Management Committee (PMC) periodically hosts Next
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Generation Cassandra Conferences (NGCC) where Cassandra committers and
other contributors share research and proposals for enhancements and new fea-
tures. After hosting a Cassandra Summit from 2012 to 2016, DataStax resumed
hosting conferences in 2019 with Accelerate, a conference focused on Cassandra
and DataStax technologies.

Training
DataStax offers training and certification on Apache Cassandra and DataStax
Enterprise at DataStax Academy.

A Marketable Skill

There continues to be increased demand for Cassandra developers
and administrators. A 2015 Dice.com salary survey placed Cassan-
dra as the second most highly compensated software skill set.
(More recent surveys are available but require login.)

Summary

In this chapter, we've taken an introductory look at Cassandra’s defining characteris-
tics, history, and major features. We have learned about the Cassandra user commu-
nity and how companies are using Cassandra. Now we’re ready to start getting some
hands-on experience.
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CHAPTER 3
Installing Cassandra

For those among us who like instant gratification, let’s start by installing Cassandra.
Because Cassandra introduces a lot of new vocabulary, there might be some unfami-
liar terms as you walk through this. That's OK; the idea here is to get set up quickly in
a simple configuration to make sure everything is running properly. This will serve as
an orientation. Then, we'll take a step back and explain Cassandra in its larger con-
text.

Installing the Apache Distribution

While there are a number of options available for installing Cassandra on various
operating systems, let’s start your journey by downloading the Apache distribution
from http://cassandra.apache.org so you can get a good look at what’s inside. We'll
explore other installation options in “Other Cassandra Distributions” on page 43.

Click the link on the Cassandra home page to download a version as a gzipped
archive. Typically, multiple versions of Cassandra are provided. The latest version is
the current recommended version for use in production. There are other supported
releases which are still viable for production usage and receive bug fixes. The project
goal is to limit the number of supported releases, but reasonable accommodations are
made. For example, the 2.2 and 2.1 releases were considered to be officially main-
tained through the release of 4.0. For all releases, the prebuilt binary is named apache-
cassandra-x.x.x-bin.tar.gz, where x.x.x represents the version number. The download
for Cassandra 4.0 is around 40 MB.

Extracting the Download

You can unpack the compressed file using any regular ZIP utility. On Unix-based sys-
tems such as Linux or macOS, gzip extraction utilities should be preinstalled; on
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Windows, you’ll need to get a program such as WinZip, which is commercial, or
something like 7-Zip, which is freeware.

Open your extracting program. You might have to extract the ZIP file and the TAR
file in separate steps. Once you have a folder on your filesystem called apache-
cassandra-x.x.x, you're ready to run Cassandra.

What's In There?

Once you decompress the tarball, you'll see that the Cassandra binary distribution
includes several files and directories.

The files include the NEWS.txt file, which includes the release notes describing fea-
tures included in the current and prior releases, and the CHANGES.txt, which is simi-
lar but focuses on bug fixes. You'll want to make sure to review these files whenever
you are upgrading to a new version so you know what changes to expect. The
LICENSE.txt and NOTICE.txt files contain the Apache 2.0 license used by Cassandra,
and copyright notices for Cassandra and included software, respectively.

Let’s take a moment to look around in the directories and see what’s there.

bin
This directory contains the executables to run Cassandra as well as clients,
including the query language shell (cqlsh). It also has scripts to run the node
tool, which is a utility for inspecting a cluster to determine whether it is properly
configured, and to perform a variety of maintenance operations. We look at node
tool in depth later. The directory also contains several utilities for performing

operations on SSTables, the files in which Cassandra stores its data on disk. We'll
discuss these utilities in Chapter 12.

conf

This directory contains the files for configuring your Cassandra instance. The
configuration files you may use most frequently include the cassandra.yaml file,
which is the primary configuration for running Cassandra, and the logback.xml
file, which lets you change the logging settings to suit your needs. Additional files
can be used to configure Java Virtual Machine (JVM) settings, the network topol-
ogy, metrics reporting, archival and restore commands, and triggers. You'll learn
how to use these configuration files in Chapter 10.

doc
Traditionally, documentation has been one of the weaker areas of the project, but
a concerted effort for the 4.0 release, including sponsorship from the Google Sea-
son of Docs project, yielded significant progress to the documentation included
in the Cassandra distribution as well as the documentation on the Cassandra
website at http://cassandra.apache.org/doc/latest/. The documentation includes a
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getting started guide, an architectural overview, and instructions for configuring
and operating Cassandra.

javadoc

lib

This directory contains a documentation website generated using Java’s JavaDoc
tool. Note that JavaDoc reflects only the comments that are stored directly in the
Java code, and as such does not represent comprehensive documentation. It’s
helpful if you want to see how the code is laid out. Moreover, Cassandra is a won-
derful project, but the code contains relatively few comments, so you might find
the JavaDoc’s usefulness limited. It may be more fruitful to simply read the class
files directly if you're familiar with Java. Nonetheless, to read the JavaDoc, open
the javadoc/index.html file in a browser.

This directory contains all of the external libraries that Cassandra needs to run.
For example, it uses two different JSON serialization libraries, the Google collec-
tions project, and several Apache Commons libraries.

pylib

This directory contains Python libraries that are used by cqlsh.

tools

This directory contains tools that are used to maintain your Cassandra nodes.
You’ll learn about these tools in Chapter 12.

Additional Directories

If you've already run Cassandra using the default configuration,
you will notice two additional directories under the main Cassan-

dra directory: data and log. We'll discuss the contents of these
directories momentarily.

Building from Source

Cassandra uses Apache Ant for its build scripting language and Maven for depend-
ency management.

Downloading Ant

You can download Ant from http://ant.apache.org. You don’t need
to download Maven separately just to build Cassandra.

Building from source requires a complete Java 8 JDK (or later version), not just the
Java Runtime Environment (JRE). If you see a message about how Ant is missing
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tools.jar, either you don’t have the full JDK or youre pointing to the wrong path in
your environment variables. Maven downloads files from the internet, so if your con-
nection is invalid or Maven cannot determine the proxy, the build will fail.

Downloading Development Builds

If you want to download the latest Cassandra builds or view test
results, you can find these in Jenkins, which the Cassandra project
uses as its continuous integration tool. See https://builds.apache.org/
label/cassandra/ for the latest builds and test coverage information.

If you interested in having a look at the Cassandra source, you can get the trunk ver-
sion of the Cassandra source using this command:

$ git clone https://github.com/apache/cassandra.git

Because Maven takes care of all the dependencies, it’s easy to build Cassandra once
you have the source. Just make sure you're in the root directory of your source down-
load and execute the ant program, which will look for a file called build.xml in the
current directory and execute the default build target. Ant and Maven take care of the
rest. To execute the Ant program and start compiling the source, just type:

$ ant

That’s it. Maven will retrieve all of the necessary dependencies, and Ant will build the
hundreds of source files and execute the tests. If all went well, you should see a BUILD
SUCCESSFUL message. If all did not go well, make sure that your path settings are all
correct, that you have the most recent versions of the required programs, and that
you downloaded a stable Cassandra build. You can check the Jenkins report to make
sure that the source you downloaded actually can compile.

More Build Output

If you want to see detailed information on what is happening dur-
ing the build, you can pass Ant the -v option to cause it to output
verbose details regarding each operation it performs.

Additional Build Targets

To compile the server, you can simply execute ant, as shown previously. This com-
mand executes the default target, jar. This target will perform a complete build,
including unit tests, and output a file into the build directory called apache-cassandra-
X.X.x.jar.
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If you want to see a list of all of the targets supported by the build file, simply pass
Ant the -p option to get a description of each target. Here are a few others you might
be interested in:

test
Users will probably find this the most helpful, as it executes the battery of unit
tests. You can also check out the unit test sources themselves for some useful
examples of how to interact with Cassandra.

stress-build
This target builds the Cassandra stress tool, which you will learn to use in Chap-
ter 13.

clean
This target removes locally created artifacts such as generated source files and
classes and unit test results. The related target realclean performs a clean and
additionally removes the Cassandra distribution JAR files and JAR files downloa-
ded by Maven.

Running Cassandra

The Cassandra developers have done a terrific job of making it very easy for new
users to start using Cassandra immediately, as you can start a single node without
making any changes to the default configuration. We'll note some of the available
configuration options below.

Required Java Version

Cassandra versions from 3.0 onward require a Java 8 JVM or later,
preferably the latest stable version. It has been tested on both the
OpenJDK and Oracle’s JDK. Cassandra 4.0 has been compiled and
tested against both Java 8 and Java 11. You can check your installed
Java version by opening a command prompt and executing java -
version. If you need a JDK, you can get one at http://
www.oracle.com/technetwork/java/javase/downloads/index.html  or
https://jdk.java.net.

Setting the Environment

Once you have the binary (or the source downloaded and compiled), you're ready to
start the database server.

Setting the JAVA_HOME environment variable is recommended. To do this on a Win-
dows system, click the Start button and then right-click on Computer. Click
Advanced System Settings, and then click the Environment Variables... button. Click
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New... to create a new system variable. In the Variable Name field, type JAVA_HOME. In
the Variable Value field, type the path to your Java installation. This is probably some-
thing like C:\Program Files\Java\jre1.8.0_25 or /usr/java/jrel.8.0_.

Once you've started the server for the first time, Cassandra will add directories to
your system to store its datafiles. The default configuration creates directories under
the CASSANDRA_HOME directory.

data
This directory is where Cassandra stores its data. By default, there are sub-
directories under the data directory, corresponding to the various datafiles Cas-
sandra uses: commitlog, data, hints, and saved_caches. Well explore the
significance of each of these datafiles in Chapter 6. If you've been trying different
versions of the database and aren’t worried about losing data, you can delete
these directories and restart the server as a last resort.

logs
This directory is where Cassandra stores its logs in a file called system.log. If you
encounter any difficulties, consult the log to see what might have happened.

Datafile Locations

The datafile locations are configurable in the cassandra.yaml file,
located in the conf directory. The properties are called
data_file_directories, commit_log_directory, hints_direc
tory, and saved_caches_directory. Well discuss the recom-
mended configuration of these directories in Chapter 10.

Many users on Unix-based systems prefer to use the /var/lib directory for data stor-
age. If you are changing this configuration, you will need to edit the conf/cassan-
dra.yaml file and create the referenced directories for Cassandra to store its data,
making sure to configure write permissions for the user that will be running Cassan-
dra:

$ sudo mkdir -p /var/lib/cassandra
$ sudo chown -R username [var/lib/cassandra

Instead of username, substitute your own username, of course.

Starting the Server

To start the Cassandra server on any OS, open a command prompt or terminal win-
dow, navigate to the <cassandra-directory>/bin where you unpacked Cassandra, and
run the command cassandra -f to start your server.
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Starting Cassandra in the Foreground

Using the -f switch tells Cassandra to stay in the foreground
instead of running as a background process, so that all of the server
logs will print to standard out (stdout in Unix systems) and you
can see them in your terminal window, which is useful for testing.
In either case, the logs will append to the system.log file.

In a clean installation, you should see quite a few log statements as the server gets
running. The exact syntax of logging statements will vary depending on the release
you’re using, but there are a few highlights you can look for. If you search for cassan
dra.yaml, you'll quickly run into the following:

INFO [main] 2019-08-25 17:42:11,712 YamlConfigurationLoader.java:89 -
Configuration location:
file:/Users/jeffreycarpenter/cassandra/conf/cassandra.yaml

INFO [main] 2019-08-25 17:42:11,855 Config.java:598 - Node configuration:[
allocate_tokens_for_keyspace=null;

These log statements indicate the location of the cassandra.yaml file containing the
configured settings. The Node configuration statement lists out the settings read
from the config file.

Now search for JVM and you’ll find something like this:

INFO [main] 2019-08-25 17:42:12,308 CassandraDaemon.java:487 -
JVM vendor/version: OpenJDK 64-Bit Server VM/12.0.1

INFO [main] 2019-08-25 17:42:12,309 CassandraDaemon.java:488 -
Heap size: 3.900GiB/3.900GiB

These log statements provide information describing the JVM being used, including
memory settings.

Next, search for the versions in use—Cassandra version, CQL version, Native pro
tocol supported versions:

INFO [main] 2019-08-25 17:42:17,847 StorageService.java:610 -
Cassandra version: 4.0-alpha3
INFO [main] 2019-08-25 17:42:17,848 StorageService.java:611 -
CQL version: 3.4.5
INFO [main] 2019-08-25 17:42:17,848 StorageService.java:612 -
Native protocol supported versions: 3/v3, 4/v4, 5/v5-beta (default: 4/v4)

You can also find statements where Cassandra is initializing internal data structures,
such as caches:

INFO [main] 2015-12-08 06:02:43,633 CacheService.java:115 -
Initializing key cache with capacity of 24 MBs.

INFO [main] 2015-12-08 06:02:43,679 CacheService.java:137 -
Initializing row cache with capacity of @ MBs
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INFO [main] 2015-12-08 06:02:43,686 CacheService.java:166 -
Initializing counter cache with capacity of 12 MBs

If you search for terms like IJMX, gossip, and listening, you'll find statements like
the following:

WARN [main] 2019-08-25 17:42:12,363 StartupChecks.java:168 -
JMX is not enabled to receive remote connections.
Please see cassandra-env.sh for more info.
INFO [main] 2019-08-25 17:42:18,354 StorageService.java:814 -
Starting up server gossip
INFO [main] 2019-08-25 17:42:18,070 InboundConnectionInitiator.java:130 -
Listening on address: (127.0.0.1:7000), nic: lo®, encryption: enabled
(openssl)

These log statements indicate the server is beginning to initiate communications with
other servers in the cluster and expose publicly available interfaces. By default, the

management interface via the Java Management Extensions (JMX) is disabled for
remote access. We'll explore the management interface in Chapter 11.

Finally, search for state jump and you’ll see the following:

INFO [main] 2019-08-25 17:42:18,581 StorageService.java:1507 -
JOINING: Finish joining ring

INFO [main] 2019-08-25 17:42:18,591 StorageService.java:2508 -
Node 127.0.0.1:7000 state jump to NORMAL

Congratulations! Now your Cassandra server should be up and running with a new
single-node cluster called “Test Cluster,” ready to interact with other nodes and cli-
ents. If you continue to monitor the output, you'll begin to see periodic output such
as memtable flushing and compaction, which you’ll learn about soon.

Starting Over

The committers work hard to ensure that data is readable from one
minor dot release to the next and from one major version to the
next. The commit log, however, needs to be completely cleared out
from version to version (even minor versions).

If you have any previous versions of Cassandra installed, you may
want to clear out the data directories for now, just to get up and
running. If you've messed up your Cassandra installation and want
to get started cleanly again, you can delete the data folders.

Stopping Cassandra

Now that you've successfully started a Cassandra server, you may be wondering how
to stop it. You may have noticed the stop-server command in the bin directory. Let’s
try running that command. Here’s what you’ll see on Unix systems:
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$ ./stop-server

please read the stop-server script before use
So you see that the server has not been stopped, but instead you are directed to read
the script. Taking a look inside with your favorite code editor, you'll learn that the
way to stop Cassandra is to kill the JVM process that is running Cassandra. The file
suggests a couple of different techniques by which you can identify the JVM process
and kill it.

The first technique is to start Cassandra using the -p option, which provides Cassan-
dra with the name of a file to which it should write the process identifier (PID) upon
starting up. This is arguably the most straightforward approach to making sure you
kill the right process.

However, because you did not start Cassandra with the -p option, you’ll need to find
the process yourself and kill it. The script suggests using pgrep to locate processes for
the current user containing the term “cassandra™

user="whoami’
pgrep -u S$user -f cassandra | xargs kill -9
Stopping Cassandra on Windows

On Windows installations, you can find the JVM process and kill it
using the Task Manager.

Other Cassandra Distributions

The instructions above showed you how to install the Apache distribution of Cassan-
dra. In addition to the Apache distribution, there are a couple of other ways to get
Cassandra:

DataStax Enterprise Edition
DataStax provides a fully supported version certified for production use. The
product line provides an integrated database platform with support for comple-
mentary data technologies such as Apache Solr for search, Apache Spark for ana-
Iytics, Apache TinkerPop for graph, as well as advanced security and other
enterprise features. We'll explore some of these integrations in Chapter 15.

Virtual machine images
A frequent model for deployment of Cassandra is to package one of the preced-
ing distributions in a virtual machine image. For example, multiple such images
are available in the Amazon Web Services (AWS) Marketplace.
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Containers
It has become increasingly popular to run Cassandra in Docker containers, espe-
cially in development environments. We'll provide some simple instructions for
running the Apache distribution in Docker in “Running Cassandra in Docker”
on page 53.

Managed services
There are a few providers of Cassandra as a managed service, where the provider
provides hosting and management of Cassandra clusters. These include Insta-
clustr and Aiven. DataStax provides an Apache Cassandra as a service called
Astra.

We'll take a deeper look at several options for deploying Cassandra in production
environments, including Kubernetes and cloud computing environments, in Chap-
ter 10.

Selecting the right distribution will depend on your deployment environment; your
needs for scale, stability, and support; and your development and maintenance budg-
ets. Having both open source and commercial deployment options provides the flexi-
bility to make the right choice for your organization.

Running the CQL Shell

Now that you have a Cassandra installation up and running, let’s give it a quick try to
make sure everything is set up properly. You'll use the CQL shell (cqlsh) to connect
to your server and have a look around.

Deprecation of the CLI

If you've used Cassandra in releases prior to 3.0, you may also be
familiar with the command-line client interface known as
cassandra-cli. The CLI was removed in the 3.0 release because it
depends on the legacy Thrift API, which was deprecated in 3.0 and
removed entirely in 4.0.

To run the shell, create a new terminal window, change to the Cassandra home direc-
tory, and type the following command (you should see output similar to that shown

here):

$ bin/cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 4.0-alpha3 | CQL spec 3.4.5 | Native protocol v4]
Use HELP for help.

Because you did not specify a node to which you wanted to connect, the shell help-
fully checks for a node running on the local host, and finds the node you started ear-
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lier. The shell also indicates that youre connected to a Cassandra server cluster called
“Test Cluster” That’s because this cluster of one node at localhost is set up for you
by default.

Renaming the Default Cluster

In a production environment, be sure to change the cluster name
to something more suitable to your application.

To connect to a specific node, specify the hostname and port on the command line.
For example, the following will connect to your local node:

$ bin/cqlsh localhost 9042

The port number can be omitted if the node uses the default value (9042). Another
alternative for configuring the cqlsh connection is to set the environment variables
$CQLSH_HOST and $CQLSH_PORT. This approach is useful if you will be frequently con-
necting to a specific node on another host. The environment variables will be overri-
den if you specify the host and port on the command line.

Connection Errors

Have you run into an error like this while trying to connect to a
server?

Exception connecting to localhost/9042. Reason:
Connection refused.

If so, make sure that a Cassandra instance is started at that host and
port, and that you can ping the host you're trying to reach. There
may be firewall rules preventing you from connecting.

To see a complete list of the command-line options supported by cqlsh, type the
command cqlsh -help.

Basic cqlsh Commands

Let’s take a quick tour of cqlsh to learn what kinds of commands you can send to the
server. You'll see how to use the basic environment commands and how to do a
round trip of inserting and retrieving some data.
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Case in cqlsh

The cqlsh commands are all case insensitive. For the examples in
this book, we adopt the convention of uppercase to be consistent
with the way the shell describes its own commands in help topics
and output.

cqlsh Help
To get help for cqlsh, type HELP or ? to see the list of available commands:

cqlsh> help

Documented shell commands:

CAPTURE CLS COPY DESCRIBE EXPAND LOGIN  SERIAL SOURCE  UNICODE
CLEAR CONSISTENCY DESC EXIT HELP PAGING SHOW TRACING

CQL help topics:

AGGREGATES CREATE_KEYSPACE DROP_TRIGGER TEXT
ALTER_KEYSPACE CREATE_MATERIALIZED_VIEW DROP_TYPE TIME
ALTER_MATERIALIZED_VIEW CREATE_ROLE DROP_USER TIMESTAMP
ALTER_TABLE CREATE_TABLE FUNCTIONS TRUNCATE
ALTER_TYPE CREATE_TRIGGER GRANT TYPES
ALTER_USER CREATE_TYPE INSERT UPDATE
APPLY CREATE_USER INSERT_JSON USE
ASCII DATE INT UUID
BATCH DELETE JSON

BEGIN DROP_AGGREGATE KEYWORDS

BLOB DROP_COLUMNFAMILY LIST_PERMISSIONS

BOOLEAN DROP_FUNCTION LIST_ROLES

COUNTER DROP_INDEX LIST_USERS
CREATE_AGGREGATE DROP_KEYSPACE PERMISSIONS
CREATE_COLUMNFAMILY DROP_MATERIALIZED_VIEW REVOKE

CREATE_FUNCTION DROP_ROLE SELECT

CREATE_INDEX DROP_TABLE SELECT_JSON

cqlsh Help Topics

You'll notice that the help topics listed differ slightly from the
actual command syntax. The CREATE_TABLE help topic describes
how to use the syntax > CREATE TABLE .., for example.

To get additional documentation about a particular command, type HELP <command>.
Many cqlsh commands may be used with no parameters, in which case they print
out the current setting. Examples include CONSISTENCY, EXPAND, and PAGING.
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Describing the Environment in cqlsh

Now that you have connected to your Cassandra instance Test Cluster, to learn more
about the cluster youre working in, type:
cqlsh> DESCRIBE CLUSTER;

Cluster: Test Cluster
Partitioner: Murmur3Partitioner

To see which keyspaces are available in the cluster, issue this command:

cqlsh> DESCRIBE KEYSPACES;

system_traces system_auth system_distributed system_views

system_schema system system_virtual_schema
Initially this list will consist of several system keyspaces. Once you have created your
own keyspaces, they will be shown as well. The system keyspaces are managed inter-
nally by Cassandra, and aren’t for you to put data into. In this way, these keyspaces
are similar to the master and temp databases in Microsoft SQL Server. Cassandra uses
these keyspaces to store the schema, tracing, and security information. We'll learn
more about these keyspaces in Chapter 6.

You can use the following command to learn the client, server, and protocol versions
in use:

cqlsh> SHOW VERSION;
[cqlsh 5.0.1 | Cassandra 4.0-alpha3 | CQL spec 3.4.5 | Native protocol v4]

You may have noticed that this version info is printed out when cqlsh starts. There
are a variety of other commands with which you can experiment. For now, let’s add
some data to the database and get it back out again.

Creating a Keyspace and Table in cqlsh

A Cassandra keyspace is sort of like a relational database. It defines one or more
tables. When you start cqlsh without specifying a keyspace, the prompt will look like
this: cqlsh>, with no keyspace specified.

Now you’ll create your own keyspace so you have something to write data to. In cre-
ating your keyspace, there are some required options. To walk through these options,
you could use the command HELP CREATE_KEYSPACE, but instead you can use the

helpful command-completion features of cqlsh. Type the following and then press
the Tab key:

cqlsh> CREATE KEYSPACE my_keyspace WITH
When you press the Tab key, cqlsh begins completing the syntax of your command:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class': '
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This is informing you that in order to specify a keyspace, you also need to specify a
replication strategy. Tab again to see what options you have:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class': '
NetworkTopologyStrategy OldNetworkTopologyStrategy SimpleStrategy

Now cqlsh is giving you three strategies to choose from. You'll learn more about
these strategies in Chapter 6. For now, choose the SimpleStrategy by typing the
name, and indicate youre done with a closing quote and Tab again:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class':
'SimpleStrategy', 'replication_factor':
The next option you're presented with is a replication factor. For the simple strategy,
this indicates how many nodes the data in this keyspace will be written to. For a pro-
duction deployment, you’ll want copies of your data stored on multiple nodes, but
because you're just running a single node at the moment, you’ll ask for a single copy.
Specify a value of “1” and a space and Tab again:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class':
'SimpleStrategy', 'replication_factor': 1};

You see that cqlsh has now added a closing bracket, indicating you've completed all
of the required options. Complete the command with a semicolon and return, and
your keyspace will be created.

Keyspace Creation Options

For a production keyspace, you would probably never want to use a
value of 1 for the replication factor. There are additional options on
creating a keyspace depending on the replication strategy that is
chosen. The command completion feature will walk through the
different options.

Have a look at your keyspace using the DESCRIBE KEYSPACE command:

cqlsh> DESCRIBE KEYSPACE my_keyspace

CREATE KEYSPACE my_keyspace WITH replication =
'SimpleStrategy', 'replication_factor': '1'}
durable_writes = true;

{'class':
AND

We see that the table has been created with the SimpleStrategy, a replication_fac
tor of one, and durable writes. Notice that your keyspace is described in much the
same syntax that we used to create it, with one additional option that we did not spec-
ify: durable_writes = true. Don’t worry about this option now; we'll return to it in
Chapter 6.

After you have created your own keyspace, you can switch to it in the shell by typing:
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cqlsh> USE my_keyspace;
cqlsh:my_keyspace>

Notice that the prompt has changed to indicate that we're using the keyspace.

Using Snake Case

You may have wondered why we directed you to to name your keyspace in “snake
case” (my_keyspace) as opposed to “camel case” (MyKeyspace), which is familiar to
developers using Java and other languages.

As it turns out, Cassandra naturally handles keyspace, table, and column names as
lowercase. When you enter names in mixed case, Cassandra stores them as all lower-
case.

This behavior can be overridden by enclosing your names in double quotes (e.g., CRE
ATE KEYSPACE "MyKeyspace"). However, it tends to be a lot simpler to use snake case
than to go against the grain.

Now that you have a keyspace, you can create a table in your keyspace. To do this in
cqlsh, use the following command:
cqlsh:my_keyspace> CREATE TABLE user ( first_name text ,
last_name text, title text, PRIMARY KEY (last_name, first_name)) ;

This creates a new table called “user” in your current keyspace with three columns to
store first and last names and a title, all of type text. The text and varchar types are
synonymous and are used to store strings. You've specified a primary key for this
table consisting of the first_name and last_name and taken the defaults for other
table options. You'll learn more about primary keys and the significance of your
choice of primary key in Chapter 4, but for now let’s think of that combination of
names as identifying unique rows in your table. The title column is the only one in
your table that is not part of the primary key.

Using Keyspace Names in cqlsh

You could have also created this table without switching to your
keyspace by using the syntax CREATE TABLE my_keyspace.user.

You can use cqlsh to get a description of a the table you just created using the
DESCRIBE TABLE command:

cqlsh:my_keyspace> DESCRIBE TABLE user;
CREATE TABLE my_keyspace.user (
first_name text,
last_name text,
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title text,
PRIMARY KEY (last_name, first_name)
) WITH bloom_filter_fp_chance = 0.01

AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

AND comment = "'

AND compaction = {'class': 'org.apache.cassandra.db.compaction.
SizeTieredCompactionStrategy', 'max_threshold': '32',
'min_threshold': '4'}

AND compression = {'chunk_length_in_kb': '16', 'class':
'org.apache.cassandra.io.compress.LZ4Compressor'}

AND crc_check_chance = 1.0

AND dclocal_read_repair_chance = 0.0

AND default_time_to_live = 0

AND gc_grace_seconds = 864000

AND max_index_interval = 2048

AND memtable_flush_period_in_ms = 0

AND min_index_interval = 128

AND read_repair_chance = 0.0

AND speculative_retry = '99p';

You'll notice that cqlsh prints a nicely formatted version of the CREATE TABLE com-
mand that you just typed in but also includes default values for all of the available

table options that you did not specify. We'll describe these settings later. For now, you
have enough to get started.

Writing and Reading Data in cqlsh

Now that you have a keyspace and a table, you can write some data to the database
and read it back out again. Its OK at this point not to know quite what’s going on.
You'll come to understand Cassandras data model in depth later. For now, you have a
keyspace (database), which has a table, which holds columns, the atomic unit of data
storage.

To write rows, you use the INSERT command:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name, title)
VALUES ('Bill', 'Nguyen', 'Mr.');
Here you have created a new row with two columns for the key Bil1, to store a set of
related values. The column names are first_name and last_name.

Now that you have written some data, you can read it back using the SELECT com-
mand:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill' AND
last_name="Nguyen';

last_name | first_name | title
___________ e
Nguyen | Bill | Mr.
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(1 rows)

In this command, you requested to return rows matching the primary key including
all columns. For this query, you specified both of the columns referenced by the pri-
mary key. What happens when you only specify one of the values? Let’s find out.

cqlsh:my_keyspace> SELECT * FROM user where last_name = 'Nguyen';

last_name | first_name | title
___________ e mmmmmmemafananea-
Nguyen | Bill | Mr.

(1 rows)

cqlsh:my_keyspace> SELECT * FROM user where first_name = 'Bill';
InvalidRequest: Error from server: code=2200 [Invalid query]
message="Cannot execute this query as it might involve data
filtering and thus may have unpredictable performance.

If you want to execute this query despite the

performance unpredictability, use ALLOW FILTERING"

This behavior might not seem intuitive at first, but it has to do with the composition
of the primary key you used for this table. This is your first clue that there might be
something a bit different about accessing data in Cassandra as compared to what you
might be used to in SQL. We'll explain the significance of your primary key selection
and the ALLOW FILTERING option in Chapter 4 and other chapters.
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Counting Data and Full Table Scans

Many new Cassandra users, especially those who are coming from
a relational background, will be inclined to use the the SELECT
COUNT command as a way to ensure data has been written. For
example, you could use the following command to verify your
write to the user table:

cqlsh:my_keyspace> SELECT COUNT (*) FROM user;
count

(1 rows)

Warnings :

Aggregation query used without partition key
Note that when you execute this command, cqlsh gives you the
correct count of rows, but also gives you a warning. This is because
you've asked Cassandra to perform a full table scan. In a multi-
node cluster with potentially large amounts of data, this COUNT
could be a very expensive operation. Throughout the rest of the
book, you’ll encounter various ways in which Cassandra tries to
warn you or constrain your ability to perform operations that will
perform poorly at scale in a distributed architecture.

You can delete a column using the DELETE command. Here you will delete the title
column from the row inserted above:

cqlsh:my_keyspace> DELETE title FROM USER WHERE
first_name='Bill' AND last_name='Nguyen';

You can perform this delete because the title column is not part of the primary key.
To make sure that the value has been removed, you can query again:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill'
AND last_name='Nguyen';

last_name | first_name | title
___________ emmmmeemeeegameanan
Nguyen | Bill | null

(1 rows)

Now you’ll clean up after yourself by deleting the entire row. It’s the same command,
but you don’t specify a column name:

cqlsh:my_keyspace> DELETE FROM USER WHERE first_name='Bill'
AND last_name='Nguyen';

To make sure that it's removed, you can query again:
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cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill'
AND last_name='Nguyen';

last_name | first_name | title
___________ e mmmemmemefannnen-

(0 rows)

If you really want to clean things up, you can remove all data from the table using the
TRUNCATE command, or even delete the table schema using the DROP TABLE com-
mand:

cqlsh:my_keyspace> TRUNCATE user;
cqlsh:my_keyspace> DROP TABLE user;

cqlsh Command History

Now that you've been using cqlsh for a while, you may have
noticed that you can navigate through commands you've executed
previously with the up and down arrow keys. This history is stored
in a file called cqlsh_history, which is located in a hidden directory
called .cassandra within your home directory. This acts like your
bash shell history, listing the commands in a plain-text file in the
order Cassandra executed them. Nice!

Running Cassandra in Docker

Over the past few years, containers have become a very popular alternative to full
machine virtualization for deployment of applications and supporting infrastructure
such as databases.

Given the high popularity of Docker and its image format, the Apache project has
begun supporting official Docker images of Cassandra.

If you have a Docker environment installed on your machine, it’s extremely simple to
start a Cassandra node. After making sure you've stopped any Cassandra node started
above, start a new node in Docker using the following two commands:

$docker pull cassandra
$docker run --name my-cassandra cassandra

The first command pulls the Docker image marked with the tag latest from the
Docker Hub https://hub.docker.com/_/cassandra/:

Using default tag: latest

latest: Pulling from library/cassandra
9fc222b64b0a: Pull complete
33b9abeacd73: Pull complete
d28230b01bc3: Pull complete
6e755ec31928: Pull complete
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https://hub.docker.com/_/cassandra/:

b881e4d8c78e: Pull complete

d8b058ab9240: Pull complete

3ddfff7126ed: Pull complete

94de8e3674c4: Pull complete

61d4f90c97c4: Pull complete

a3do09e31ead: Pull complete

Digest: sha256:0f188d784235e1bedf191361096e6eeab330f9579eac7d2e68e14a5c29f75ad6
Status: Downloaded newer image for cassandra:latest
docker.io/library/cassandra:latest

The second command starts an instance of Cassandra with default options. Note that

you could have used the -d option to start the container in the background without
printing out the logs.

You used the --name option to specify a name for the container, which allows you to
reference the container by name when using other Docker commands. For example,
you can stop the container by using the command:

$docker stop my-cassandra

If you don’t provide a name for the container, the Docker runtime will assign a ran-
domly selected name such as breezy_ensign. Docker also creates a unique identifier
for each container which is returned from the initial run command. Either the name
or ID may be used to reference a specific container in Docker commands.

If youd like to start an instance of cqlsh, the simplest way is to use the copy inside
the instance by executing a command on the instance:

Sdocker exec -it my-cassandra cqlsh

This will give you a cqlsh prompt, with which you could execute the same com-
mands you've practiced in this chapter, or any other commands youd like.

Up to this point, you've only created a single Cassandra node in Docker, which is not
accessible from outside Docker’s internal network. In order to access this node from
outside Docker for CQL queries, you'll want to make sure the standard CQL port is
exposed when the node is created:

$docker start cassandra -p 9042:9042

There are several other configuration options available for running Cassandra in
Docker, which are documented on the Docker Hub page referenced above. One exer-
cise you may find interesting is to launch multiple nodes in Docker to create a small
cluster.
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Summary

Now you should have a Cassandra installation up and running. You've worked with
the cqlsh client to insert and retrieve some data, and youre ready to take a step back
and get the big picture on Cassandra before really diving into the details.
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CHAPTER 4
The Cassandra Query Language

In this chapter, you'll gain an understanding of Cassandra’s data model and how that
data model is implemented by the Cassandra Query Language (CQL). We'll show
how CQL supports Cassandra’s design goals and look at some general behavior char-
acteristics.

For developers and administrators coming from the relational world, the Cassandra
data model can be difficult to understand initially. Some terms, such as keyspace, are
completely new, and some, such as column, exist in both worlds but have slightly dif-
ferent meanings. The syntax of CQL is similar in many ways to SQL, but with some
important differences. For those familiar with NoSQL technologies such as Dynamo
or Bigtable, it can also be confusing, because although Cassandra may be based on
those technologies, its own data model is significantly different.

So in this chapter, we start from relational database terminology and introduce Cas-
sandra’s view of the world. Along the way you’ll get more familiar with CQL and learn
how it implements this data model.

The Relational Data Model

In a relational database, the database itself is the outermost container that might cor-
respond to a single application. The database contains tables. Tables have names and
contain one or more columns, which also have names. When you add data to a table,
you specify a value for every column defined; if you don’'t have a value for a particular
column, you use null. This new entry adds a row to the table, which you can later
read if you know the row’s unique identifier (primary key), or by using a SQL state-
ment that expresses some criteria that row might meet. If you want to update values
in the table, you can update all of the rows or just some of them, depending on the
filter you use in a “where” clause of your SQL statement.
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After this review, you're in good shape to look at Cassandra’s data model in terms of
its similarities and differences.

Cassandra’s Data Model

In this section, well take a bottom-up approach to understanding Cassandra’s data
model.

The simplest data store you would conceivably want to work with might be an array
or list. It would look like Figure 4-1.

Value 1 Value 2 Value 3

Figure 4-1. A list of values

If you persisted this list, you could query it later, but you would have to either exam-
ine each value in order to know what it represented, or always store each value in the
same place in the list and then externally maintain documentation about which cell in
the array holds which values. That would mean you might have to supply empty
placeholder values (nulls) in order to keep the predetermined size of the array in case
you didn’t have a value for an optional attribute (such as a fax number or apartment
number). An array is a clearly useful data structure, but not semantically rich.

Now let’s add a second dimension to this list: names to match the values. Give names
to each cell, and now you have a map structure, as shown in Figure 4-2.

Name 1 Name 2 Name 3
Value 1 Value 2 Value 3

Figure 4-2. A map of name/value pairs

This is an improvement because you can know the names of your values. So if you
decided that your map would hold user information, you could have column names
like first_name, last_name, phone, email, and so on. This is a somewhat richer
structure to work with.

But the structure you've built so far works only if you have one instance of a given
entity, such as a single person, user, hotel, or tweet. It doesn’t give you much if you

58 | Chapter4: The Cassandra Query Language



want to store multiple entities with the same structure, which is certainly what you
want to do. There’s nothing to unify some collection of name/value pairs, and no way
to repeat the same column names. So you need something that will group some of the
column values together in a distinctly addressable group. You need a key to reference
a group of columns that should be treated together as a set. You need rows. Then, if
you get a single row, you can get all of the name/value pairs for a single entity at once,
or just get the values for the names you're interested in. You could call these name/
value pairs columns. You could call each separate entity that holds some set of col-
umns rows. And the unique identifier for each row could be called a row key or pri-
mary key. Figure 4-3 shows the contents of a simple row: a primary key, which is itself
one or more columns, and additional columns. Let’s come back to the primary key
shortly.

Row
Column 1 Column 2 ‘ Column 3
Primary Key + + +
‘ Value 1 ‘ ’ Value 2 ‘ ‘ Value 3 ‘

Figure 4-3. A Cassandra row

Cassandra defines a table to be a logical division that associates similar data. For
example, you might have a user table, a hotel table, an address book table, and so
on. In this way, a Cassandra table is analogous to a table in the relational world.

Now you don’t need to store a value for every column every time you store a new
entity. Maybe you don't know the values for every column for a given entity. For
example, some people have a second phone number and some don’t, and in an online
form backed by Cassandra, there may be some fields that are optional and some that
are required. That's OK. Instead of storing null for those values you don't know,
which would waste space, you just don't store that column at all for that row. So now
you have a sparse, multidimensional array structure that looks like Figure 4-4. This
flexible data structure is characteristic of Cassandra and other databases classified as
wide column stores.
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P
Table
Row
‘ Column 1 ‘ ‘ Column 2 ‘ ’ Column 3 ‘
Primary Key + + +
’ Value 1 ‘ ‘ Value 2 ‘ ’ Value 3 ‘
Row
‘ Column 1 H Column 4 ‘
Primary Key + +
’ Value 1 ‘ ’ Value 4 ‘
S

Figure 4-4. A Cassandra table

Now let’s return to the discussion of primary keys in Cassandra, as this is a funda-
mental topic that will affect your understanding of Cassandra’s architecture and data
model, how Cassandra reads and writes data, and how it is able to scale.

Cassandra uses a special type of primary key called a composite key (or compound
key) to represent groups of related rows, also called partitions. The composite key
consists of a partition key, plus an optional set of clustering columns. The partition key
is used to determine the nodes on which rows are stored and can itself consist of mul-
tiple columns. The clustering columns are used to control how data is sorted for stor-
age within a partition. Cassandra also supports an additional construct called a static
column, which is for storing data that is not part of the primary key but is shared by
every row in a partition.

Figure 4-5 shows how each partition is uniquely identified by a partition key, and
how the clustering keys are used to uniquely identify the rows within a partition.
Note that in the case where no clustering columns are provided, each partition con-
sists of a single row.
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Cassandra Table

Partition Row Row
‘Static(olumn‘ l Clustering Column ‘ | Column 1 ‘ ‘ Clustering Column | ‘ Column 1 |
Partition Key
‘ Value ‘ ‘ Value ‘ | Value ‘ ‘ Value | ‘ Value |
Partition Row
‘Static(olumn‘ ‘ Clustering Column ‘ | Column 1 ‘ ‘ Column 2 ‘
Partition Key
‘ Value ‘ ‘ Value ‘ | Value ‘ ‘ Value ‘

Figure 4-5. A Cassandra table with partitions

Putting these concepts all together, we have the basic Cassandra data structures:

o The column, which is a name/value pair
o The row, which is a container for columns referenced by a primary key

o The partition, which is a group of related rows that are stored together on the
same nodes

o The table, which is a container for rows organized by partitions
o The keyspace, which is a container for tables

o The cluster, which is a container for keyspaces that spans one or more nodes

So that’s the bottom-up approach to looking at Cassandra’s data model. Now that you
know the basic terminology, let’s examine each structure in more detail.

Clusters

As previously mentioned, the Cassandra database is specifically designed to be dis-
tributed over several machines operating together that appear as a single instance to
the end user. So the outermost structure in Cassandra is the cluster, sometimes called
the ring, because Cassandra assigns data to nodes in the cluster by arranging them in
aring.

Keyspaces

A cluster is a container for keyspaces. A keyspace is the outermost container for data
in Cassandra, corresponding closely to a database in the relational model. In the same
way that a database is a container for tables in the relational model, a keyspace is a
container for tables in the Cassandra data model. Like a relational database, a key-
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space has a name and a set of attributes that define keyspace-wide behavior such as
replication.

Because were currently focusing on the data model, we'll leave questions about set-
ting up and configuring clusters and keyspaces until later. We'll examine these topics
in Chapter 10.

Tables

A table is a container for an ordered collection of rows, each of which is itself an
ordered collection of columns. Rows are organized in partitions and assigned to
nodes in a Cassandra cluster according to the column(s) designated as the partition
key. The ordering of data within a partition is determined by the clustering columns.

When you write data to a table in Cassandra, you specify values for one or more col-
umns. That collection of values is called a row. You must specify a value for each of
the columns contained in the primary key as those columns taken together will
uniquely identify the row.

Let’s go back to the user table from the previous chapter. Remember how you wrote a
row of data and then read it using the SELECT command in cqlsh:

cqlsh:my_keyspace> SELECT * FROM user where last_name = 'Nguyen';

last_name | first_name | title
___________ B
Nguyen | Bill | Mr.

(1 rows)

You’ll notice in the last line of output that one row was returned. It turns out to be the
row identified by the last_name “Nguyen” and first_name “Bill”. This is the primary
key that uniquely identifies this row.

One interesting point about the above query is that it is only specifying the partition
key, which makes it a query that could potentially return multiple rows. To illustrate
this point, let’s add another user with the same last_name and then repeat the SELECT
command from above:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name, title)
VALUES ('Wanda', 'Nguyen', 'Mrs.');
cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Nguyen';

last_name | first_name | title
___________ e
Nguyen | Bill | Mr.
Nguyen | Wanda | Mrs.

(2 rows)
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As you can see, by partitioning users by last_name, you've made it possible to load
the entire partition in a single query by providing that last_name. To access just one
single row, youd need to specify the entire primary key:

cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Nguyen' AND
first_name='Bill';

last_name | first_name | title
........... Y
Nguyen | Bill | Mr.

(1 rows)

Data Access Requires a Primary Key

To summmarize this important detail: the SELECT, INSERT, UPDATE,
and DELETE commands in CQL all operate in terms of rows. For
INSERT and UPDATE commands, all of the primary key columns
must be specified using the WHERE clause in order to identify the
specific row that is affected. The SELECT and DELETE commands
can operate in terms of one or more rows within a partition, an
entire partition, or even multiple partitions by using the WHERE and
IN clauses. We'll explore these commands in more detail in Chap-
ter 9.

While you do need to provide a value for each primary key column when you add a
new row to the table, you are not required to provide values for nonprimary key col-
umns. To illustrate this, let’s insert another row with no title:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name)

. VALUES ('Mary', 'Rodriguez');
cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Rodriguez';

last_name | first_name | title

___________ e

Rodriguez | Mary | null

(1 rows)
Since you have not set a value for title, the value returned is null.
Now if you decide later that you would also like to keep track of users’ middle initials,
you can modify the user table using the ALTER TABLE command and then view the
results using the DESCRIBE TABLE command:

cqlsh:my_keyspace> ALTER TABLE user ADD middle_initial text;
cqlsh:my_keyspace> DESCRIBE TABLE user;

CREATE TABLE my_keyspace.user (
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last_name text,

first_name text,

middle_1initial text,

title text,

PRIMARY KEY (last_name, first_name)

) ...

You see that the middle_initial column has been added. Note that we've shortened
the output to omit the various table settings. You'll learn more about these settings
and how to configure them throughout the rest of the book.

Now, let’s write some additional rows, populate different columns for each, and read
the results:

cqlsh:my_keyspace> INSERT INTO user (first_name, middle_initial, last_name,
title)
VALUES ('Bill', 'S', 'Nguyen', 'Mr.'");

cqlsh:my_keyspace> INSERT INTO user (first_name, middle_initial, last_name,
title)
VALUES ('Bill', 'R', 'Nguyen', 'Mr.');

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill' AND
last_name="'Nguyen';

last_name | first_name | middle_initial | title
----------- L ik R
Nguyen | Bill | R | Mr.

(1 rows)

Was this the result that you expected? If youre following closely, you may have
noticed that both of the INSERT statements above specify a previous row uniquely
identified by the primary key columns first_name and last_name. As a result, Cas-
sandra has faithfully updated the row you indicated, and your SELECT will only return
the single row that matches that primary key. The two INSERT statements have only
served to first set and then overwrite the middle_initial.

Insert, Update, and Upsert

Because Cassandra uses an append model, there is no fundamental
difference between the insert and update operations. If you insert a
row that has the same primary key as an existing row, the row is
replaced. If you update a row and the primary key does not exist,
Cassandra creates it.

For this reason, it is often said that Cassandra supports upsert,
meaning that inserts and updates are treated the same, with one
minor exception which we'll discuss in “Lightweight Transactions”
on page 195.
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Let’s visualize the data you've inserted up to this point in Figure 4-6. Notice that there
are two partitions, identified by the last_name values of “Nguyen” and “Rodriguez”
The “Nguyen” partition contains the two rows, “Bill” and “Wanda,” and the row for
“Bill” contains values in the title and middle_initial columns, while “Wanda” has
only a title and no middle_initial specified.

user table
‘ last_name K ‘ | first_name C ‘ | title ‘ |middle7initia|| | first_name C ‘ | title ‘
v v v v ¥ '
‘ ‘Nguyen' ‘ ‘ 'Bill ‘ | ‘Mr' ‘ | R | | ‘Wanda' | | "Mrs' |
‘ last_nameK ‘ ‘ first_name € ‘
v !
‘ 'Rodriguez’ ‘ ‘ ‘Mary' ‘

Figure 4-6. Data inserted into the user table

Now that you've learned more about the structure of a table and done some data
modeling, let’s dive deeper into columns.

Columns

A column is the most basic unit of data structure in the Cassandra data model. So far
you've seen that a column contains a name and a value. You constrain each of the val-
ues to be of a particular type when you define the column. You’ll want to dig into the
various types that are available for each column, but first let’s take a look into some
other attributes of a column that we haven’t discussed yet: timestamps and time to
live. These attributes are key to understanding how Cassandra uses time to keep data
current.

Timestamps

Each time you write data into Cassandra, a timestamp, in microseconds, is generated
for each column value that is inserted or updated. Internally, Cassandra uses these
timestamps for resolving any conflicting changes that are made to the same value, in
what is frequently referred to as a last write wins approach.

Let’s view the timestamps that were generated for previous writes by adding the write
time() function to the SELECT command for the title column, plus a couple of
other values for context:
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cqlsh:my_keyspace> SELECT first_name, last_name, title, writetime(title)
FROM user;

|
------------ R L e
Mary | Rodriguez | null | null
Bill | Nguyen | Mr. | 1567876680189474
Wanda | Nguyen | Mrs. | 1567874109804754
(3 rows)

As you might expect, there is no timestamp for a column that has not been set. You
might expect that if you ask for the timestamp on first_name or last_name, youd get
a similar result to the values obtained for the title column. However, it turns out
you're not allowed to ask for the timestamp on primary key columns:

cqlsh:my_keyspace> SELECT WRITETIME(first_name) FROM user;
InvalidRequest: code=2200 [Invalid query] message="Cannot use
selection function writeTime on PRIMARY KEY part first_name"

Cassandra also allows you to specify a timestamp you want to use when performing
writes. To do this, you'll use the CQL UPDATE command for the first time. Use the
optional USING TIMESTAMP option to manually set a timestamp (note that the time-
stamp must be later than the one from your SELECT command, or the UPDATE will be
ignored):

cqlsh:my_keyspace> UPDATE user USING TIMESTAMP 1567886623298243

SET middle_initial = 'Q' WHERE first_name = 'Mary' AND last_name = 'Rodri-
gquez';
cqlsh:my_keyspace> SELECT first_name, middle_initial, last_name,

WRITETIME(middle_initial) FROM user WHERE first_name = 'Mary' AND
last_name = 'Rodriguez';

first_name | middle_initial | last_name | writetime(middle_1initial)
------------ T L E T R TR
Mary | Q | Rodriguez | 1567886623298243

(1 rows)

This statement has the effect of adding the middle_initial column and setting the
timestamp to the value you provided.

Working with Timestamps

Setting the timestamp is not required for writes. This functionality
is typically used for writes in which there is a concern that some of
the writes may cause fresh data to be overwritten with stale data.
This is advanced behavior and should be used with caution.

There is currently not a way to convert timestamps produced by
writetime() into a more friendly format in cqlsh.
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Time to live (TTL)

One very powerful feature that Cassandra provides is the ability to expire data that is
no longer needed. This expiration is very flexible and works at the level of individual
column values. The time to live (or TTL) is a value that Cassandra stores for each
column value to indicate how long to keep the value.

The TTL value defaults to null, meaning that data that is written will not expire. Let’s

show this by adding the TTL() function to a SELECT command in cqlsh to see the
TTL value for Mary's title:

cqlsh:my_keyspace> SELECT first_name, last_name, TTL(title)
FROM user WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

first_name | last_name | ttl(title)
............ e
Mary | Rodriguez | null

(1 rows)

Now let’s set the TTL on the last name column to an hour (3,600 seconds) by adding
the USING TTL option to your UPDATE command:

cqlsh:my_keyspace> UPDATE user USING TTL 3600 SET middle_initial =
'Z' WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT first_name, middle_initial,
last_name, TTL(middle_initial)
FROM user WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

first_name | middle_initial | last_name | ttl(middle_initial)
Mary | Z | Rodriguez | 3574

(1 rows)

As you can see, the clock is already counting down your TTL, reflecting the several
seconds it took to type the second command. If you run this command again in an
hour, Mary’s middle_initial will be shown as null. You can also set TTL on
INSERTS using the same USING TTL option, in which case the entire row will expire.

You can try inserting a row using TTL of 60 seconds and check that the row is ini-
tially there:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name)
VALUES ('Jeff', 'Carpenter') USING TTL 60;

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Jeff' AND
last_name='Carpenter';

last_name | first_name | middle_initial | title
——————————— LT S L LT TETT
Carpenter | Jeff | null | null
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(1 rows)
After you wait a minute, the row is no longer there:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Jeff' AND
last_name='Carpenter"';

last_name | first_name | middle_initial | title
----------- B LR T T s EEEETE

(0 rows)

Using TTL

Remember that TTL is stored on a per-column level for nonpri-
mary key columns. There is currently no mechanism for setting
TTL at a row level directly after the initial insert; you would instead
need to reinsert the row, taking advantage of Cassandras upsert
behavior. As with the timestamp, there is no way to obtain or set
the TTL value of a primary key column, and the TTL can only be
set for a column when you provide a value for the column.

If you want to set TTL across an entire row, you must provide a value for every non-
primary key column in your INSERT or UPDATE command.

CQL Types

Now that we've taken a deeper dive into how Cassandra represents columns, includ-
ing time-based metadata, let’s look at the various types that are available to you for
representing values.

As you've seen previously, each column in a table is of a specified type. Up until this
point, you've only used the varchar type, but there are plenty of other options avail-
able in CQL, so let’s explore them.

CQL supports a flexible set of data types, including simple character and numeric
types, collections, and user-defined types. We'll describe these data types and provide
some examples of how they might be used to help you learn to make the right choice
for your data model.

Numeric Data Types

CQL supports the numeric types youd expect, including integer and floating-point
numbers. These types are similar to standard types in Java and other languages:
int

A 32-bit signed integer (as in Java)
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bigint
A 64-bit signed long integer (equivalent to a Java long)

smallint
A 16-bit signed integer (equivalent to a Java short)

tinyint
An 8-bit signed integer (as in Java)

varint
A variable precision signed integer (equivalent to java.math.BigInteger)

float
A 32-bit IEEE-754 floating point (as in Java)

double
A 64-bit IEEE-754 floating point (as in Java)

decimal

A variable precision decimal (equivalent to java.math.BigDecimal)

Additional Integer Types

The smallint and tinyint types were added in the Cassandra 2.2
release.

While enumerated types are common in many languages, there is no direct equiva-
lent in CQL. A common practice is to store enumerated values as strings. For exam-
ple, in Java you might use the Enum.name() method to convert an enumerated value
to a String for writing to Cassandra as text, and the Enum.value0Of() method to con-
vert from text back to the enumerated value.

Textual Data Types

CQL provides two data types for representing text, one of which you've made quite a
bit of use of already (text):

text, varchar

Synonyms for a UTF-8 character string
ascii

An ASCII character string

UTF-8 is the more recent and widely used text standard and supports internationali-
zation, so we recommend using text over ascii when building tables for new data.
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The ascii type is most useful if you are dealing with legacy data that is in ASCII for-
mat.

Setting the Locale in cqlsh

By default, cqlsh prints out control and other unprintable charac-
ters using a backslash escape. You can control how cqlsh displays
non-ASCII characters by setting the locale with the $LANG environ-
ment variable before running the tool. See the cqlsh command
HELP TEXT_OUTPUT for more information.

Time and Identity Data Types

The identity of data elements such as rows and partitions is important in any data
model in order to be able to access the data. Cassandra provides several types which
prove quite useful in defining unique partition keys. Let’s take some time (pun
intended) to dig into these:

timestamp

While we noted earlier that each column has a timestamp indicating when it was
last modified, you can also use a timestamp as the value of a column itself. The
time can be encoded as a 64-bit signed integer, but it is typically much more use-
ful to input a timestamp using one of several supported ISO 8601 date formats.
For example:

2015-06-15 20:05-0700
2015-06-15 20:05:07-0700
2015-06-15 20:05:07.013-0700
2015-06-15T720:05-0700
2015-06-15T20:05:07-0700
2015-06-15T720:05:07.013+-0700

The best practice is to always provide time zones rather than relying on the oper-
ating system time zone configuration.

date, time

Releases through Cassandra 2.1 only had the timestamp type to represent times,
which included both a date and a time of day. The 2.2 release introduced date
and time types that allowed these to be represented independently; that is, a date
without a time, and a time of day without reference to a specific date. As with
timestamp, these types support ISO 8601 formats.

Although there are new java.time types available in Java 8, the date type maps
to a custom type in Cassandra in order to preserve compatibility with older
JDKs. The time type maps to a Java long representing the number of nanosec-
onds since midnight.
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uuid
A universally unique identifier (UUID) is a 128-bit value in which the bits con-
form to one of several types, of which the most commonly used are known as
Type 1 and Type 4. The CQL uuid type is a Type 4 UUID, which is based entirely
on random numbers. UUIDs are typically represented as dash-separated sequen-
ces of hex digits. For example:

136300ca-0572-4736-a393-c0b7229e193e

The uuid type is often used as a surrogate key, either by itself or in combination
with other values.

Because UUIDs are of a finite length, they are not absolutely guaranteed to be
unique. However, most operating systems and programming languages provide
utilities to generate IDs that provide adequate uniqueness. You can also obtain a
Type 4 UUID value via the CQL uuid() function and use this value in an INSERT
or UPDATE.

timeuuid
This is a Type 1 UUID, which is based on the MAC address of the computer, the
system time, and a sequence number used to prevent duplicates. This type is fre-
quently used as a conflict-free timestamp. CQL provides several convenience
functions for interacting with the timeuuid type: now(), dateOf(), and unixTi
mestampOf().

The availability of these convenience functions is one reason why timeuuid tends
to be used more frequently than uuid.

Building on the previous examples, you might determine that youd like to assign a
unique ID to each user, as first_name is perhaps not a sufficiently unique key for the
user table. After all, it’s very likely that you'll run into users with the same first name
at some point. If you were starting from scratch, you might have chosen to make this
identifier your primary key, but for now you’ll add it as another column.

Primary Keys Are Forever

After you create a table, there is no way to modify the primary key,
because this controls how data is distributed within the cluster, and
even more importantly, how it is stored on disk.

Let’s add the identifier using a uuid:
cqlsh:my_keyspace> ALTER TABLE user ADD id uuid;

Next, insert an ID for Mary using the uuid() function and then view the results:
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cqlsh:my_keyspace> UPDATE user SET id = uuid() WHERE first_name =
'Mary' AND last_name = 'Rodriguez';

cqlsh:my_keyspace> SELECT first_name, id FROM user WHERE
first_name = 'Mary' AND last_name = 'Rodriguez';

first_name | id
____________ e e m e e e memeememmemmemeeeeeemeem—an.

Mary | ebf87fee-b372-4104-8a22-00c1252e3e05

(1 rows)

Notice that the id is in UUID format.

Now you have a more robust table design, which you can extend with even more col-
umns as you learn about more types.

Other Simple Data Types

CQL provides several other simple data types that dont fall nicely into one of the cat-
egories above:

boolean

This is a simple true/false value. The cqlsh is case insensitive in accepting these
values but outputs True or False.

blob

A binary large object (blob) is a colloquial computing term for an arbitrary array
of bytes. The CQL blob type is useful for storing media or other binary file types.
Cassandra does not validate or examine the bytes in a blob. CQL represents the
data as hexadecimal digits—for example, ©x00000ab83cf0. If you want to encode
arbitrary textual data into the blob, you can use the textAsBlob() function in
order to specify values for entry. See the cqlsh help function HELP BLOB_INPUT
for more information.

inet

This type represents IPv4 or IPv6 internet addresses. cqlsh accepts any legal for-
mat for defining IPv4 addresses, including dotted or nondotted representations
containing decimal, octal, or hexadecimal values. However, the values are repre-
sented using the dotted decimal format in cqlsh output—for example,
192.0.2.235

IPv6 addresses are represented as eight groups of four hexadecimal digits, separa-
ted by colons—for example, 2001:0db8:85a3:0000:0000:8a2e:0370:7334. The
IPv6 specification allows the collapsing of consecutive zero hex values, so the
preceding value is rendered as follows when read using SELECT: 2001:
db8:85a3:3::8a2e:370:7334.
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counter

The counter data type provides a 64-bit signed integer, whose value cannot be set
directly, but only incremented or decremented. Cassandra is one of the few data-
bases that provides race-free increments across data centers. Counters are fre-
quently used for tracking statistics such as numbers of page views, tweets, log
messages, and so on. The counter type has some special restrictions. It cannot be
used as part of a primary key. If a counter is used, all of the columns other than
primary key columns must be counters.

For example, you could create an additional table to count the number of times a
user has visited a website:

cqlsh:my_keyspace> CREATE TABLE user_visits (
user_id uuid PRIMARY KEY, visits counter);

Youd then increment the value for user “Mary” according to the unique ID
assigned previously each time she visits the site:

cqlsh:my_keyspace> UPDATE user_visits SET visits = visits + 1
WHERE user_1id=ebf87fee-b372-4104-8a22-00c1252e3e05;

And you could read out the value of the counter just as you read any other col-
umn:

cqlsh:my_keyspace> SELECT visits from user_visits WHERE
user_id=ebf87fee-b372-4104-8a22-00c1252e3e05;

visits

(1 rows)

There is no operation to reset a counter directly, but you can approximate a reset by
reading the counter value and decrementing by that value. Unfortunately, this is not
guaranteed to work perfectly, as the counter may have been changed elsewhere in
between reading and writing.
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A Warning About Idempotence

The counter increment and decrement operators are not idempo-
tent. An idempotent operation is one that will produce the same

" result when executed multiple times. Incrementing and decrement-
ing are not idempotent because executing them multiple times
could result in different results as the stored value is increased or
decreased.

To see how this is possible, consider that Cassandra is a distributed
system in which interactions over a network may fail when a node
fails to respond to a request indicating success or failure. A typical
client response to this request is to retry the operation. The result
of retrying a nonidempotent operation such as incrementing a
counter is not predictable. Since it is not known whether the first
attempt succeeded, the value may have been incremented twice.
This is not a fatal flaw, but something you’ll want to be aware of
when using counters.

The only other CQL operation that is not idempotent besides

incrementing or decrementing a counter is adding an item to a
list, which we'll discuss below.

Collections

Let’s say you wanted to extend the user table to support multiple email addresses.
One way to do this would be to create additional columns such as email2, email3,
and so on. While this approach will work, it does not scale very well and might cause
a lot of rework. It is much simpler to deal with the email addresses as a group or “col-
lection” CQL provides three collection types to help you with these situations: sets,
lists, and maps. Let’s now take a look at each of them:

set
The set data type stores a collection of elements. The elements are unordered
when stored, but are returned in sorted order. For example, text values are
returned in alphabetical order. Sets can contain the simple types you've learned
above, as well as user-defined types (which we’ll discuss momentarily) and even
other collections. One advantage of using set is the ability to insert additional
items without having to read the contents first.

You can modify the user table to add a set of email addresses:

cqlsh:my_keyspace> ALTER TABLE user ADD emails set<text>;

Then add an email address for Mary and check that it was added successfully:

cqlsh:my_keyspace> UPDATE user SET emails = { 'mary@example.com' }
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT emails FROM user WHERE first_name =
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'"Mary' AND last_name = 'Rodriguez';

emails

{'mary@example.com'}

(1 rows)

Note that in adding that first email address, you replaced the previous contents of
the set, which in this case was null. You can add another email address later
without replacing the whole set by using concatenation:

cqlsh:my_keyspace> UPDATE user
SET emails = emails + {'mary.rodriguez.AZ@gmail.com' }
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT emails FROM user
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

{'mary.mcdonald.AZ@gmail.com', 'mary@example.com'}
(1 rows)

Other Set Operations

You can also clear items from the set by using the subtraction
operator: SET emails = emails - {'mary@example.com'}.

Alternatively, you could clear out the entire set by using the
empty set notation: SET emails = {}.

list
The 1ist data type contains an ordered list of elements. By default, the values are
stored in order of insertion. You can modify the user table to add a list of phone
numbers:

cqlsh:my_keyspace> ALTER TABLE user ADD phone_numbers list<text>;
Then add a phone number for Mary and check that it was added successfully:

cqlsh:my_keyspace> UPDATE user SET phone_numbers = ['1-800-999-9999' ]
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT phone_numbers FROM user WHERE
first_name = 'Mary' AND last_name = 'Rodriguez';

phone_numbers

['1-800-999-9999' ]
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(1 rows)
Let’s add a second number by appending it:

cqlsh:my_keyspace> UPDATE user SET phone_numbers =
phone_numbers + [ '480-111-1111"' ]
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT phone_numbers FROM user WHERE
first_name = 'Mary' AND last_name = 'Rodriguez';

phone_numbers

['1-800-999-9999', '480-111-1111']
(1 rows)

The second number you added now appears at the end of the list.

You could also have prepended the number to the front of the
list by reversing the order of the values: SET phone_numbers =
[€4801234567'] + phone_numbers.

You can replace an individual item in the list when you reference it by its index:

cqlsh:my_keyspace> UPDATE user SET phone_numbers[1] = '480-111-1111"'
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

As with sets, you can also use the subtraction operator to remove items that
match a specified value:

cqlsh:my_keyspace> UPDATE user SET phone_numbers =
phone_numbers - [ '480-111-1111"' ]
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

Finally, you can delete a specific item directly using its index:

cqlsh:my_keyspace> DELETE phone_numbers[0] from user WHERE
first_name = 'Mary' AND last_name = 'Rodriguez';
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Expensive List Operations

Because a list stores values according to position, there is the
potential that updating or deleting a specific item in a list could

" require Cassandra to read the entire list, perform the requested
operation, and write out the entire list again. This could be an
expensive operation if you have a large number of values in the list.
For this reason, many users prefer to use the set or map types, espe-
cially in cases where there is the potential to update the contents of
the collection.

map
The map data type contains a collection of key-value pairs. The keys and the val-
ues can be of any type except counter. Let’s try this out by using a map to store
information about user logins. Create a column to track login session time, in
seconds, with a timeuuid as the key:

cqlsh:my_keyspace> ALTER TABLE user ADD
login_sessions map<timeuuid, int>;

Then you can add a couple of login sessions for Mary and see the results:

cqlsh:my_keyspace> UPDATE user SET login_sessions =
{ now(): 13, now(): 18}
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT login_sessions FROM user
WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

login_sessions

{839b2660-d1c0-11e9-8309-6d2c86545d91: 13,
839b2661-d1cO-11e9-8309-6d2c86545d91: 18}

(1 rows)

We can also reference an individual item in the map by using its key.

Collection types are very useful in cases where we need to store a variable number of
elements within a single column.

Tuples

Now you might decide that you need to keep track of physical addresses for your
users. You could just use a single text column to store these values, but that would put
the burden of parsing the various components of the address on the application. It
would be better if you could define a structure in which to store the addresses to
maintain the integrity of the different components.
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Fortunately, Cassandra provides two different ways to manage more complex data
structures: tuples and user-defined types.

First, let’s have a look at tuples, which provide a way to have a fixed-length set of val-
ues of various types. For example, you could add a tuple column to the user table that
stores an address. You could have added a tuple to define addresses, assuming a
three-line address format and an integer postal code such as a US zip code:

cqlsh:my_keyspace> ALTER TABLE user ADD
address tuple<text, text, text, int>;

Then you could populate an address using the following statement:

cqlsh:my_keyspace> UPDATE user SET address =

('7712 E. Broadway', 'Tucson', 'AZ', 85715 )

WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
This does provide you the ability to store an address, but it can be a bit awkward to
try to remember the positional values of the various fields of a tuple without having a
name associated with each value. There is also no way to update individual fields of a
tuple; the entire tuple must be updated. For these reasons, tuples are infrequently
used in practice, because Cassandra offers an alternative that provides a way to name
and access each value, which we'll examine next.

But first, let’s use the CQL DROP command to get rid of the address column so that
you can replace it with something better.

cqlsh:my_keyspace> ALTER TABLE user DROP address;

User-Defined Types

Cassandra gives you a way to define your own types to extend its data model. These
user-defined types (UDTs) are easier to use than tuples since you can specify the val-
ues by name rather than position. Create your own address type:

cqlsh:my_keyspace> CREATE TYPE address (
street text,
city text,
state text,
zip_code int);

A UDT is scoped by the keyspace in which it is defined. You could have written CRE

ATE TYPE my_keyspace.address. If you run the command DESCRIBE KEYSPACE
my_keyspace, you'll see that the address type is part of the keyspace definition.

Now that you have defined the address type, you can use it in the user table. Rather
than simply adding a single address, you can use a map to store multiple addresses to

which you can give names such as “home,” “work,” and so on. However, you immedi-
ately run into a problem:
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cqlsh:my_keyspace> ALTER TABLE user ADD
addresses map<text, address>;

InvalidRequest: code=2200 [Invalid query] message="Non-frozen
collections are not allowed inside collections: map<text,

address>"

What is going on here? It turns out that a user-defined data type is considered a col-
lection, as its implementation is similar to a set, list, or map. You've asked Cassan-

dra to nest one

collection inside another.

Freezing Collections

Cassandra releases prior to 2.2 do not fully support the nesting of
collections. Specifically, the ability to access individual attributes of
a nested collection is not yet supported, because the nested collec-
tion is serialized as a single object by the implementation. There-
fore, the entire nested collection must be read and written in its
entirety.

Freezing is a concept that was introduced as a forward compatibil-
ity mechanism. For now, you can nest a collection within another
collection by marking it as frozen, which means that Cassandra
will store that value as a blob of binary data. In the future, when
nested collections are fully supported, there will be a mechanism to
“unfreeze” the nested collections, allowing the individual attributes
to be accessed.

You can also use a collection as a primary key if it is frozen.

Now that we've taken a short detour to discuss freezing and nested tables, lets get
back to modifying your table, this time marking the address as frozen:

cqlsh:my_keyspace> ALTER TABLE user ADD addresses map<text,
frozen<address>>;

Now let’s add a home address for Mary:

cqlsh:my_keyspace> UPDATE user SET addresses = addresses +

{"home"':

{ street: '7712 E. Broadway', city: 'Tucson',

state: 'AZ', zip_code: 85715 } }

WHERE first_name = 'Mary' AND last_name = 'Rodriguez’;
cqlsh:my_keyspace> SELECT addresses FROM user

WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

addresses

{'home': {street: '7712 E. Broadway',

(1 rows)

city: 'Tucson', state: 'AZ', zip_code: 85715}}

CQL Types
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Now that you've learned about the various types, let’s take a step back and look at the

tables you've created so far by describing my_keyspace:

cqlsh:my_keyspace> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication = {'class':

'SimpleStrategy', 'replication_factor': '1') AND
durable_writes = true;

CREATE TYPE my_keyspace.address (
street text,
city text,
state text,
zip_code int

)

CREATE TABLE my_keyspace.user (
last_name text,
first_name text,
addresses map<text, frozen<address>>,
emails set<text>,
id uuid,
login_sessions map<timeuuid, int>,
middle_initial text,
phone_numbers list<text>,
title text,
PRIMARY KEY (last_name, first_name)
) WITH CLUSTERING ORDER BY (first_name ASC)
AND bloom_filter_fp_chance = 0.01

AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

AND comment = "'

AND compaction = {'class': 'org.apache.cassandra.db.compaction
.SizeTieredCompactionStrategy', 'max_threshold': '32',

'min_threshold': '4'}

AND compression = {'chunk_length_in_kb': '16', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}
AND crc_check_chance = 1.0
AND dclocal_read_repair_chance = 0.1
AND default_time_to_live = 0
AND gc_grace_seconds = 864000
AND max_index_interval = 2048
AND memtable_flush_period_in_ms = 0
AND min_index_interval = 128
AND read_repair_chance = 0.0
AND speculative_retry = '99PERCENTILE';

CREATE TABLE my_keyspace.user_visits (
user_id uuid PRIMARY KEY,
visits counter
) WITH bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition':
AND comment = ''

"NONE'}

80 | Chapter4: The Cassandra Query Language



AND compaction = {'class': 'org.apache.cassandra.db.compaction
.SizeTieredCompactionStrategy', 'max_threshold': '32',
'min_threshold': '4'}

AND compression = {'chunk_length_in_kb': '16', 'class':
'org.apache.cassandra.io.compress.LZ4Compressor'}

AND crc_check_chance = 1.0

AND dclocal_read_repair_chance = 0.1

AND default_time_to_live = 0

AND gc_grace_seconds = 864000

AND max_index_interval = 2048

AND memtable_flush_period_in_ms = 0

AND min_index_interval = 128

AND read_repair_chance = 0.0

AND speculative_retry = '99PERCENTILE';

Practicing CQL Commands

The commands listed in this chapter to operate on the user table
are available as a gist on GitHub to make it easier for you to exe-
cute them: https://git.io/fjihw. The file is named cqlsh_intro.cql.

Summary

In this chapter, you took a quick tour of Cassandra’s data model of clusters, keyspaces,
tables, keys, rows, and columns. In the process, you learned a lot of CQL syntax and
gained more experience working with tables and columns in cqlsh. If youre interes-
ted in diving deeper into CQL, you can read the full language specification.
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CHAPTER 5
Data Modeling

The data model you use is the most important factor in your success with Cassandra.

—Patrick McFadin

More than any configuration or tuning you can perform, your data model is the main
factor that will affect your application performance and cluster maintenance. In this
chapter, you'll learn how to design data models for Cassandra, including a data mod-
eling process and notation. To apply this knowledge, you'll design the data model for
a sample application, which you’ll build over the next several chapters. This will help
show how all the parts fit together. Along the way, you'll see some tools to help you
manage your CQL scripts.

Conceptual Data Modeling

First, let’s create a simple domain model that is easy to understand in the relational
world, and then see how you might map it from a relational to a distributed hashtable
model in Cassandra.

To create the example, we want to use something that is complex enough to show the
various data structures and design patterns, but not something that will bog you
down with details. Also, a domain that’s familiar to everyone will allow you to con-
centrate on how to work with Cassandra, not on what the application domain is all
about.

Let’s use a domain that is easily understood and that everyone can relate to: making
hotel reservations.

Our conceptual domain includes hotels, guests that stay in the hotels, a collection of
rooms for each hotel, the rates and availability of those rooms, and a record of reser-
vations booked for guests. Hotels typically also maintain a collection of “points of
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interest,” which are parks, museums, shopping galleries, monuments, or other places
near the hotel that guests might want to visit during their stay. Both hotels and points
of interest need to maintain geolocation data so that they can be found on maps for
mashups, and to calculate distances.

The conceptual domain is shown in Figure 5-1 using the entity-relationship model
popularized by Peter Chen. This simple diagram represents the entities in the domain
with rectangles, and attributes of those entities with ovals. Attributes that represent
unique identifiers for items are underlined. Relationships between entities are repre-
sented as diamonds, and the connectors between the relationship and each entity
show the multiplicity of the connection.
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Figure 5-1. Hotel domain entity-relationship diagram

Obviously, in the real world, there would be many more considerations and much
more complexity. For example, hotel rates are notoriously dynamic, and calculating
them involves a wide array of factors. Here you'll define something complex enough
to be interesting and touch on the important points, but simple enough to maintain
the focus on learning Cassandra.

RDBMS Design

When you set out to build a new data-driven application that will use a relational
database, you might start by modeling the domain as a set of properly normalized
tables and use foreign keys to reference related data in other tables.

Figure 5-2 shows how you might represent the data storage for an application using a
relational database model. The relational model includes a couple of “join” tables in
order to realize the many-to-many relationships from the conceptual model of hotels-
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to-points of interest, rooms-to-amenities, rooms-to-availability, and guests-to-rooms
(via a reservation).

RoomAvailability
RoomID
HotellD
Date
A 4 Available
Hotel
HotellD h 4 Reservation
Name » oo GuestID Guest
Phone ~ | RoomID RoomID
Address HotellD €« StartDate »| GuestID
A RoomNumber EndDate Eam.f
Rate ConfirmNumber mal
HotelToPOI T ,
HotellD > PointOfinterest RoomToAmenity Amenity
POIID POIID RoomID > AmenitylD
Name AmenitylD Name
Description

Figure 5-2. A simple hotel search system using RDBMS

Design Differences Between RDBMS and Cassandra

Of course, because this is a Cassandra book, what you really want is to model your
data so you can store it in Cassandra. Before you start creating a Cassandra data
model, let’s take a minute to highlight some of the key differences in doing data mod-
eling for Cassandra versus a relational database.

No joins

You cannot perform joins in Cassandra. If you have designed a data model and find
that you need something like a join, you’ll have to either do the work on the client
side, or create a denormalized second table that represents the join results for you.
This latter option is preferred in Cassandra data modeling. Performing joins on the
client should be a very rare case; you really want to duplicate (denormalize) the data
instead.
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No referential integrity

Although Cassandra supports features such as lightweight transactions and batches,
Cassandra itself has no concept of referential integrity across tables. In a relational
database, you could specify foreign keys in a table to reference the primary key of a
record in another table. But Cassandra does not enforce this. It is still a common
design requirement to store IDs related to other entities in your tables, but operations
such as cascading deletes are not available.

Denormalization

In relational database design, you are often taught the importance of normalization.
This is not an advantage when working with Cassandra because it performs best
when the data model is denormalized. It is often the case that companies end up
denormalizing data in relational databases as well. There are two common reasons for
this. One is performance. Companies simply can’t get the performance they need
when they have to do so many joins on years’ worth of data, so they denormalize
along the lines of known queries. This ends up working, but goes against the grain of
how relational databases are intended to be designed, and ultimately makes one ques-
tion whether using a relational database is the best approach in these circumstances.

A second reason that relational databases get denormalized on purpose is a business
document structure that requires retention. That is, you have an enclosing table that
refers to a lot of external tables whose data could change over time, but you need to
preserve the enclosing document as a snapshot in history. The common example here
is with invoices. You already have customer and product tables, and youd think that
you could just make an invoice that refers to those tables. But this should never be
done in practice. Customer or price information could change, and then you would
lose the integrity of the invoice document as it was on the invoice date, which could
violate audits, reports, or laws, and cause other problems.

In the relational world, denormalization violates Codd’s normal forms, and you try to
avoid it. But in Cassandra, denormalization is, well, perfectly normal. It's not required
if your data model is simple. But don’t be afraid of it.

Server-Side Denormalization with Materialized Views

Historically, denormalization in Cassandra has required designing
and managing multiple tables using techniques we will introduce
momentarily. Beginning with the 3.0 release, Cassandra provides
an experimental feature known as materialized views which allows
you to create multiple denormalized views of data based on a base
table design. Cassandra manages materialized views on the server,
including the work of keeping the views in sync with the table.
We'll share examples of classic denormalization in this chapter, and
discuss materialized views in Chapter 7.
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Query-first design

Relational modeling, in simple terms, means that you start from the conceptual
domain and then represent the nouns in the domain in tables. You then assign pri-
mary keys and foreign keys to model relationships. When you have a many-to-many
relationship, you create the join tables that represent just those keys. The join tables
don’t exist in the real world, and are a necessary side effect of the way relational mod-
els work. After you have all your tables laid out, you can start writing queries that pull
together disparate data using the relationships defined by the keys. The queries in the
relational world are very much secondary. It is assumed that you can always get the
data you want as long as you have your tables modeled properly. Even if you have to
use several complex subqueries or join statements, this is usually true.

By contrast, in Cassandra you don't start with the data model; you start with the
query model. Instead of modeling the data first and then writing queries, with Cas-
sandra you model the queries and let the data be organized around them. Think of
the most common query paths your application will use, and then create the tables
that you need to support them.

Detractors have suggested that designing the queries first is overly constraining on
application design, not to mention database modeling. But it is perfectly reasonable to
expect that you should think hard about the queries in your application, just as you
would, presumably, think hard about your relational domain. You may get it wrong,
and then you’ll have problems in either world. Or your query needs might change
over time, and then you’ll have to work to update your data set. But this is no differ-
ent from defining the wrong tables, or needing additional tables, in an RDBMS.

Designing for optimal storage

In a relational database, it is frequently transparent to the user how tables are stored
on disk, and it is rare to hear of reccommendations about data modeling based on how
the RDBMS might store tables on disk. However, that is an important consideration
in Cassandra. Because Cassandra tables are each stored in separate files on disk, it’s
important to keep related columns defined together in the same table.

A key goal as you begin creating data models in Cassandra is to minimize the number
of partitions that must be searched in order to satisfy a given query. Because the parti-
tion is a unit of storage that does not get divided across nodes, a query that searches a
single partition will typically yield the best performance.

Sorting is a design decision

In an RDBMS, you can easily change the order in which records are returned to you
by using ORDER BY in your query. The default sort order is not configurable; by
default, records are returned in the order in which they are written. If you want to
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change the order, you just modify your query, and you can sort by any list of col-
umns.

In Cassandra, however, sorting is treated differently; it is a design decision. The sort
order available on queries is fixed, and is determined entirely by the selection of clus-
tering columns you supply in the CREATE TABLE command. The CQL SELECT state-
ment does support ORDER BY semantics, but only in the order specified by the
clustering columns (ascending or descending).

Defining Application Queries

Let’s try the query-first approach to start designing the data model for your hotel
application. The user interface design for the application is often a great artifact to use
to begin identifying queries. Let’s assume that you've talked with the project stake-
holders, and your UX designers have produced user interface designs or wireframes
for the key use cases. You’'ll likely have a list of shopping queries like the following:

 QI. Find hotels near a given point of interest.

Q2. Find information about a given hotel, such as its name and location.
+ Q3. Find points of interest near a given hotel.

Q4. Find an available room in a given date range.

« Q5. Find the rate and amenities for a room.

Number Your Queries

It is often helpful to be able to refer to queries by a shorthand num-
ber rather that explaining them in full. The queries listed here are
numbered Q1, Q2, and so on, which is how we will reference them
in diagrams throughout this example.

Now if your application is to be a success, you'll certainly want your customers to be
able to book reservations at your hotels. This includes steps such as selecting an avail-
able room and entering their guest information. So clearly you will also need some
queries that address the reservation and guest entities from the conceptual data
model. Even here, however, you'll want to think not only from the customer perspec-
tive in terms of how the data is written, but also in terms of how the data will be quer-
ied by downstream use cases.

Our natural tendency as data modelers would be to focus first on designing the tables
to store reservation and guest records, and only then start thinking about the queries
that would access them. You may have felt a similar tension already when we began
discussing the shopping queries before, thinking “but where did the hotel and point
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of interest data come from?” Don’t worry, we will get to this soon enough. Here are
some queries that describe how your users will access reservations:

+ Q6. Look up a reservation by confirmation number.
o Q7. Look up a reservation by hotel, date, and guest name.
» Q8. Look up all reservations by guest name.

o Q9. View guest details.

Examine the queries in the context of the workflow of the application in Figure 5-3.
Each box on the diagram represents a step in the application workflow, with arrows
indicating the flows between steps and the associated query. If you've modeled your
application well, each step of the workflow accomplishes a task that “unlocks” subse-
quent steps. For example, the “View hotels near POI” task helps the application learn
about several hotels, including their unique keys. The key for a selected hotel may be
used as part of Q2, in order to obtain detailed description of the hotel. The act of
booking a room creates a reservation record that may be accessed by the guest and
hotel staff at a later time through various additional queries.
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Figure 5-3. Hotel application queries

Logical Data Modeling

Now that you have defined your queries, youre ready to begin designing Cassandra
tables. First, you'll create a logical model containing a table for each query, capturing
entities and relationships from the conceptual model.

To name each table, identify the primary entity type for which you are querying, and
use that to start the entity name. If you are querying by attributes of other related
entities, you append those to the table name, separated with _by_. For example,
hotels_by_poti.

Logical Data Modeling | 89



Next, identify the primary key for the table, adding partition key columns based on
the required query attributes, and clustering columns in order to guarantee unique-
ness and support desired sort ordering.

The Importance of Primary Keys in Cassandra

The design of the primary key is extremely important, as it will
determine how much data will be stored in each partition and how
that data is organized on disk, which in turn will affect how quickly
Cassandra processes read queries.

You complete the design of each table by adding any additional attributes identified
by the query. If any of these additional attributes are the same for every instance of
the partition key, mark the column as static.

Now that was a pretty quick description of a fairly involved process, so it will be
worth your time to work through a detailed example. First, let’s introduce a notation
that you can use to represent your logical models.

Introducing Chebotko Diagrams

Several individuals within the Cassandra community have proposed notations for
capturing data models in diagrammatic form. We've elected to use a notation popu-
larized by Artem Chebotko which provides a simple, informative way to visualize the
relationships between queries and tables in your designs. Figure 5-4 shows the Che-
botko notation for a logical data model.
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Q1 < Query supported by this table
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column_name_3 (| < Clustering key column (DESC)
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Figure 5-4. A Chebotko logical diagram

Each table is shown with its title and a list of columns. Primary key columns are iden-
tified via symbols such as K for partition key columns and C1 or C| to represent
clustering columns. Lines are shown entering tables or between tables to indicate the
queries that each table is designed to support.

Hotel Logical Data Model

Figure 5-5 shows a Chebotko logical data model for the queries involving hotels,
points of interest, rooms, and amenities. One thing you’ll notice immediately is that
the Cassandra design doesn’t include dedicated tables for rooms or amenities, as you
had in the relational design. This is because your workflow didn't identify any queries
requiring this direct access.
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Q3 |
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pois_by_hotel
hotel id K amenities_by_room
poi_name (1 hotel_id K
description room_id K
amenity_name (1
description

Figure 5-5. Hotel domain logical model

Let’s explore the details of each of these tables.

The first query QI is to find hotels near a point of interest, so you'll call the table
hotels_by_poti. Youe searching by a named point of interest, so that is a clue that
the point of interest should be a part of the primary key. Let’s reference the point of
interest by name, because according to your workflow that is how your users will start
their search.

You'll note that you certainly could have more than one hotel near a given point of
interest, so you'll need another component in your primary key in order to make sure
you have a unique partition for each hotel. So you add the hotel key as a clustering
column.

Let’s also assume that according to your application workflow, your user will provide
a name of a point of interest, but would benefit from seeing the description of the
point of interest alongside hotel results. Therefore you include the poi_description
as a column in the hotels_by_pot table, and designate this value as a static column
since the point of interest description is the same for all rows in a partition.

Make Your Primary Keys Unique

An important consideration in designing your table’s primary key
is making sure that it defines a unique data element. Otherwise you
run the risk of accidentally overwriting data.
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Now for the second query (Q2), you'll need a table to get information about a specific
hotel. One approach would be to put all of the attributes of a hotel in the
hotels_by_poti table, but you choose to add only those attributes required by your
application workflow.

From the workflow diagram, you note that the hotels_by_pot table is used to display
a list of hotels with basic information on each hotel, and the application knows the
unique identifiers of the hotels returned. When the user selects a hotel to view details,
you can then use Q2, which is used to obtain details about the hotel. Because you
already have the hotel_id from Ql, you use that as a reference to the hotel youre
looking for. Therefore the second table is just called hotels.

Another option would be to store a set of poi_names in the hotels table. This is an
equally valid approach. You'll learn through experience which approach is best for
your application.

Q3 is just a reverse of Ql—looking for points of interest near a hotel, rather than
hotels near a point of interest. This time, however, you need to access the details of
each point of interest, as represented by the pois_by_hotel table. As you did previ-
ously, you add the point of interest name as a clustering key to guarantee uniqueness.

At this point, let’s now consider how to support query Q4 to help your users find
available rooms at a selected hotel for the nights they are interested in staying. Note
that this query involves both a start date and an end date. Because youre querying
over a range instead of a single date, you know that you’ll need to use the date as a
clustering key. You use the hotel_id as a primary key to group room data for each
hotel on a single partition, which should help your search be super fast. Let’s call this
the available_rooms_by hotel_date table.

Searching Over a Range

Use clustering columns to store attributes that you need to access
in a range query. Remember that the order of the clustering col-
umns is important. You'll learn more about range queries in Chap-
ter 9.

The Wide Partition Pattern

The design of the available_rooms_by_hotel_date table is an instance of the wide
partition pattern. This pattern is sometimes called the wide row pattern when discus-
sing databases that support similar models, but wide partition is a more accurate
description from a Cassandra perspective. The essence of the pattern is to group mul-
tiple related rows in a partition in order to support fast access to multiple rows within
the partition in a single query.
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In order to round out the shopping portion of your data model, you add the ament
ties_by_room table to support Q5. This will allow your user to view the amenities of
one of the rooms that is available for the desired stay dates.

Reservation Logical Data Model

Now let’s switch gears to look at the reservation queries. Figure 5-6 shows a logical
data model for reservations. You’ll notice that these tables represent a denormalized
design; the same data appears in multiple tables, with differing keys.

I I
reservations_ reservations_by_guest reservations_
by_confirmation by_hotel_date
guest_last_name K
confirm_number K hotel id t hotel_id K
hotel_id € guest_ id @ start_date K
room_id room_id room_id (&)
start_date el dhie end_date guest_id K
end_date ol _date confirm_number —9—> first_name
guest_id confTrm o guest_id last_name
I title
Q9 email
na phone_numbers
AV
addresses

Figure 5-6. A denormalized logical model for reservations

In order to satisfy Q6, the reservations_by_confirmation table supports the lookup
of reservations by a unique confirmation number provided to the customer at the
time of booking.

If the guest doesn’t have the confirmation number, the reservations_by_guest table
can be used to look up the reservation by guest name. You could envision query Q7
being used on behalf of a guest on a self-serve website or a call center agent trying to
assist the guest. Because the guest name might not be unique, you include the guest
ID here as a clustering column as well.

The hotel staff might wish to see a record of upcoming reservations by date in order
to get insight into how the hotel is performing, such as the dates the hotel is sold out
or undersold. Q8 supports the retrieval of reservations for a given hotel by date.

Finally, you create a guests table. Youll notice that it has similar attributes to the
user table from Chapter 4. This provides a single location that you can use to store
data about guests. In this case, you specify a separate unique identifier for your guest
records, as it is not uncommon for guests to have the same name. In many organiza-
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tions, a customer database such as the guests table would be part of a separate cus-
tomer management application, which is why we've omitted other guest access
patterns from this example.

Design Queries for All Stakeholders

Q8 and Q9 in particular help to remind you that you need to create
queries that support various stakeholders of your application, not
just customers but staff as well, and perhaps even the analytics
team, suppliers, and so on.

More Patterns and Anti-Patterns

As with other types of software design, there are some well-known patterns and anti-
patterns for data modeling in Cassandra. You've already used one of the most com-
mon patterns in your hotel model—the wide partition pattern.

The time series pattern is an extension of the wide partition pattern. In this pattern, a
series of measurements at specific time intervals are stored in a wide partition, where
the measurement time is used as part of the partition key. This pattern is frequently
used in domains including business analysis, sensor data management, and scientific
experiments.

The time series pattern is also useful for data other than measurements. Consider the
example of a banking application. You could store each customer’s balance in a row,
but that might lead to a lot of read and write contention as various customers check
their balance or make transactions. You’ll probably be tempted to wrap a transaction
around your writes just to protect the balance from being updated in error. In con-
trast, a time series-style design would store each transaction as a timestamped row
and leave the work of calculating the current balance to the application.

One design trap that many new users fall into is attempting to use Cassandra as a
queue. Each item in the queue is stored with a timestamp in a wide partition. Items
are appended to the end of the queue and read from the front, being deleted after they
are read. This is a design that seems attractive, especially given its apparent similarity
to the time series pattern. The problem with this approach is that the deleted items
are now tombstones that Cassandra must scan past in order to read from the front of
the queue. Over time, a growing number of tombstones begins to degrade read per-
formance. We'll discuss tombstones in Chapter 6.

The queue anti-pattern serves as a reminder that any design that relies on the deletion
of data is potentially a poorly performing design.
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Physical Data Modeling

Once you have a logical data model defined, creating the physical model is a relatively
simple process.

You walk through each of your logical model tables, assigning types to each item. You
can use any of the types you learned in Chapter 4, including the basic types, collec-
tions, and user-defined types. You may identify additional user-defined types that can
be created to simplify your design.

After you've assigned data types, you analyze your model by performing size calcula-
tions and testing out how the model works. You may make some adjustments based
on your findings. Once again, let’s cover the data modeling process in more detail by
working through an example.

First, let’s look at a few additions to the Chebotko notation for physical data models.

Chebotko Physical Diagrams

To draw physical models, you need to be able to add the typing information for each
column. Figure 5-7 shows the addition of a type for each column in a sample table.

The figure includes a designation of the keyspace containing each table, and visual
cues for columns represented using collections and user-defined types. Note also the
designation of static columns and secondary index columns (we’ll discuss secondary
indexes in Chapter 7). There is no restriction on assigning these as part of a logical
model, but they are typically more of a physical data modeling concern.
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keyspace_name
column_name 1 K <5 Partition key column
column_name_2 (1 <4 Clustering key column (ASC)
column_name_3 (| <11 Clustering key column (DESC)
column_name_4 § <=1 Static column
column_name_5 IDX <=1 Secondary index column
column_name_6 ++ < Counter column
[column_name_7] ¢-=4--- List collection column
{column_name_8} ¢-f=4-- Set collection column
<column_name_9> ¢-1=1--- Map collection column
*column_name_10* <4+ UDT column
(column_name_11) ¢4 Tuple column
column_name_12 ¢-1=1--- Regular column

Figure 5-7. Extending the Chebotko notation for physical data models

Hotel Physical Data Model

Now let’s get to work on your physical model. First, you need keyspaces to contain
your tables. To keep the design relatively simple, you create a hotel keyspace to con-
tain tables for hotel and availability data, and a reservation keyspace to contain
tables for reservation and guest data. In a real system, you might divide the tables
across even more keyspaces in order to separate concerns.

For the hotels table, you use Cassandra’s text type to represent the hotel’s id. For the
address, you use the address type similar to the one you created in Chapter 4. You
use the text type to represent the phone number, as there is considerable variance in
the formatting of numbers between countries.
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Using Unique Identifiers as References

While it would make sense to use the uuid type for attributes such
as the hotel_id, for the purposes of this book we mostly use text
attributes as identifiers, to keep the samples simple and readable.
For example, a common convention in the hospitality industry is to
reference properties by short codes like “AZ123” or “NY229” We'll
use these values for hotel_ids, while acknowledging they are not
necessarily globally unique.

You'll find that it’s often helpful to use unique IDs to uniquely ref-
erence elements, and to use these uuids as references in tables rep-
resenting other entities. This helps to minimize coupling between
different entity types. This may prove especially effective if you are
using a microservice architectural style for your application, in
which there are separate services responsible for each entity type.

As you work to create physical representations of various tables in your logical hotel
data model, you use the same approach. The resulting design is shown in Figure 5-8.

hotel keyspace

hotel_id K poi_name K street
name hotel_id G city
phone name state_or_province
*address* phone postal_code

*address* country

available_rooms_ pois_by_hotel amenities_by_room

hotel_id K hotel_id K
hotel_id K poi_name G room_number K

by_hotel_date

date a description amenity_name 1t
room_number Cr description text

is_available

Figure 5-8. Hotel physical model

The address type is also included in the design, designated with an asterisk to denote
that it is a user-defined type, and has no primary key columns identified. You make
use of this type in the hotels and hotels_by_pot tables.
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Taking Advantage of User-Defined Types

User-defined types are frequently used to create logical groupings
of nonprimary key columns, as you have done with the address
user-defined type. UDTs can also be stored in collections to further
reduce complexity in the design.

Remember that the scope of a UDT is the keyspace in which it is
defined. To use address in the reservation keyspace youre about
to design, you'll have to declare it again.

Reservation Physical Data Model

Now, let’s examine the reservation tables in your design. Remember that your logical
model contained three denormalized tables to support queries for reservations by
confirmation number, guest, and hotel and date. For the first iteration of your physi-
cal data model design, let’s assume you're going to manage this denormalization man-
ually. (We'll revisit this design choice in Chapter 7 to consider using Cassandras
materialized view feature.)

reservation keyspace

reservations_by_hotel_date reservations_by_confirmation

hotel_id K confirm_number (_text ) K
start_date K hotel_id (
room_number (t start_date (1

nights room_number (1 *address*

confirm_number nights

guest_id guest_id street
ity

s
postal_code

guest_last_name(__test ) K guest_id K country

hotel_id (1 first_name
room_number (t last_name

start_date G title
nights {emails}
confirm_number [phone_numbers](_text ]
quest_id <addresses>

Figure 5-9. Reservation physical model

Note that you have reproduced the address type in this keyspace and modeled the
guest_id as a uuid type in all of your tables.
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Evaluating and Refining

Once you've created your physical model, there are some steps you'll want to take to
evaluate and refine your table designs to help ensure optimal performance.

Calculating Partition Size

The first thing that you want to look for is whether your tables will have partitions
that will be overly large, or to put it another way, too wide. Partition size is measured
by the number of cells (values) that are stored in the partition. Cassandras hard limit
is two billion cells per partition, but you’ll likely run into performance issues before
reaching that limit. The recommended size of a partition is not more than 100,000
cells.

In order to calculate the size of your partitions, you use the following formula:

N, = 100 rooms/hotel x 730 days = 73,000 rows

The number of values (or cells) in the partition (N,) is equal to the number of static
columns (N,) plus the product of the number of rows (N,) and the number of of val-
ues per row. The number of values per row is defined as the number of columns (N.)
minus the number of primary key columns (N,,) and static columns (N,).

The number of columns tends to be relatively static, although as you have seen, it is
quite possible to alter tables at runtime. For this reason, a primary driver of partition
size is the number of rows in the partition. This is a key factor that you must consider
in determining whether a partition has the potential to get too large. Two billion val-
ues sounds like a lot, but in a sensor system where tens or hundreds of values are
measured every millisecond, the number of values starts to add up pretty fast.

Let’s take a look at one of your tables to analyze the partition size. Because it has a
wide partition design with one partition per hotel, you choose the avail
able_rooms_by_hotel_date table. The table has four columns total (N, = 4), includ-
ing three primary key columns (N, = 3) and no static columns (N; = 0). Plugging
these values into the formula, you get:

N,=N,(4-3-0)+0=1N,

Therefore the number of values for this table is equal to the number of rows. You still
need to determine a number of rows. To do this, you make some estimates based on
the application youre designing. The table is storing a record for each room, in each
of your hotels, for every night. Let’s assume that your system will be used to store 2
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years of inventory at a time, and there are 5,000 hotels in the system, with an average
of 100 rooms in each hotel.

Since there is a partition for each hotel, the estimated number of rows per partition is
as follows:

N, =100 rooms/hotel x 730 days = 73,000 rows

This relatively small number of rows per partition is not an issue, but the number of
cells may be. If you start storing more dates of inventory, or don't manage the size of
your inventory well using TTL, you could start having issues. You still might want to
look at breaking up this large partition, which you’ll learn how to do shortly.

Estimate for the Worst Case

When performing sizing calculations, it is tempting to assume the
nominal or average case for variables, such as the number of rows.
Consider calculating the worst case as well, as these sorts of predic-
tions have a way of coming true in successful systems.

Calculating Size on Disk

In addition to calculating the size of your partitions, it is also an excellent idea to esti-
mate the amount of disk space that will be required for each table you plan to store in
the cluster. In order to determine the size, you use the following formula to determine
the size S, of a partition:

\($$S_t = \displaystyle\sum_i sizeOf\big (c_{k_i}\big) + \displaystyle\sum_j
sizeOf\big(c_{s_j}\big) + N_r\times \bigg(\displaystyle\sum_k sizeOf\big(c_{r_k}
\big) + \displaystyle\sum_1I sizeOf\big(c_{c_I}\big)\bigg) +$$\)

This is a bit more complex than the previous formula, but let’s break it down a bit at a
time, starting with the notation:

« In this formula, ¢, refers to partition key columns, ¢, to static columns, c, to regu-
lar columns, and c. to clustering columns.

o The term,,, refers to the average number of bytes of metadata stored per cell,

avg

such as timestamps. It is typical to use an estimate of 8 bytes for this value.

» You recognize the number of rows N, and number of values N, from previous
calculations.
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o The sizeOf{) function refers to the size, in bytes, of the CQL data type of each ref-
erenced column.

The first term asks you to sum the size of the partition key columns. For this design,
the available_rooms_by_hotel_date table has a single partition key column, the
hotel_1id, which you chose to make of type text. Assuming your hotel identifiers are
simple 5-character codes, you have a 5-byte value, so the sum of the partition key col-
umn sizes is 5 bytes.

The second term asks you to sum the size of your static columns. This table has no
static columns, so in your case this is 0 bytes.

The third term is the most involved, and for good reason—it is calculating the size of
the cells in the partition. You sum the size of the clustering columns and regular col-
umns. The clustering columns are the date, which is 4 bytes, and the room_number,
which is a 2-byte short integer, giving a sum of 6 bytes. There is only a single regular
column, the boolean is_available, which is 1 byte in size. Summing the regular col-
umn size (1 byte) plus the clustering column size (6 bytes) gives a total of 7 bytes. To
finish up the term, you multiply this value by the number of rows (73,000), giving a
result of 511,000 bytes (0.51 MB).

The fourth term is simply counting the metadata that Cassandra stores for each cell.
In the storage format used by Cassandra 3.0 and later, the amount of metadata for a
given cell varies based on the type of data being stored, and whether or not custom
timestamp or TTL values are specified for individual cells. For your table, you reuse
the number of values from the previous calculation (73,000) and multiply by 8, which
gives a result of 0.58 MB.

Adding these terms together, you get the final estimate:
Partition size = 16 bytes + 0 bytes + 0.51 MB + 0.58 MB = 1.1 MB

This formula is an approximation of the uncompressed size of a partition on disk, but
is accurate enough to be quite useful. (Note that if you make use of SSTable compres-
sion, as discussed in Chapter 13, the storage space required will be reduced.) Remem-
bering that the partition must be able to fit on a single node, it looks like your table
design will not put a lot of strain on your disk storage.

A More Compact Storage Format

As mentioned in Chapter 2, Cassandras storage engine was re-
implemented for the 3.0 release, including a new format for
SSTable files. The previous format stored a separate copy of the
clustering columns as part of the record for each cell. The newer
format eliminates this duplication, which reduces the size of stored
data and simplifies the formula for computing that size.
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Keep in mind also that this estimate only counts a single replica of your data. You will
need to multiply the value obtained here by the number of partitions and the number
of replicas specified by the keyspace’s replication strategy in order to determine the
total required capacity for each table. This will come in handy when you learn how to
plan cluster deployments in Chapter 10.

Breaking Up Large Partitions

As discussed previously, your goal is to design tables that can provide the data you
need with queries that touch a single partition, or failing that, the minimum possible
number of partitions. However, as you have seen in previous examples, it is quite pos-
sible to design wide partition-style tables that approach Cassandra’s built-in limits.
Performing sizing analysis on tables may reveal partitions that are potentially too
large, either in number of values, size on disk, or both.

The technique for splitting a large partition is straightforward: add an additional col-
umn to the partition key. In most cases, moving one of the existing columns into the
partition key will be sufficient. Another option is to introduce an additional column
to the table to act as a sharding key, but this requires additional application logic.

Continuing to examine the available rooms example, if you add the date column to
the partition key for the available_rooms_by_hotel_date table, each partition
would then represent the availability of rooms at a specific hotel on a specific date.
This will certainly yield partitions that are significantly smaller, perhaps too small, as
the data for consecutive days will likely be on separate nodes. This also increases your
effort to do queries that span multiple days, as you will have to query multiple parti-
tions.

Another technique known as bucketing is often used to break the data into moderate-
size  partitions. For example, you could bucketize the avail
able_rooms_by_hotel_date table by adding a month column to the partition key,
perhaps represented as an integer. The comparision with the original design is shown
in Figure 5-10. While the month column is partially duplicative of the date, it pro-
vides a nice way of grouping related data in a partition that will not get too large.
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available_rooms__ available_rooms__
by_hotel_date by_hotel_date_bucketed

hotel_id K hotel_id K
date (Cdate ) C1 month K
room_number 4 date C
is_available room_number C
is_available

N
7

Figure 5-10. Adding a month bucket to the available_rooms_by_hotel_date table

If you really felt strongly about preserving a wide partition design, you could instead
add the room_1id to the partition key, so that each partition would represent the avail-
ability of the room across all dates. Because you haven't identified a query that
involves searching availability of a specific room, the first or second design approach
is most suitable to your application needs.

Defining Database Schema

Once you have finished evaluating and refining your physical model, youre ready to
implement the schema in CQL. Here is the schema for the hotel keyspace, using
CQLs comment feature to document the query pattern supported by each table:

CREATE KEYSPACE hotel
WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

CREATE TYPE hotel.address (
street text,
city text,
state_or_province text,
postal_code text,
country text

);

CREATE TABLE hotel.hotels_by_poi (

poi_name text,

poi_description text STATIC,

hotel_1id text,

name text,

phone text,

address frozen<addresss>,

PRIMARY KEY ((poi_name), hotel_id)
) WITH comment = 'Q1. Find hotels near given poi'
AND CLUSTERING ORDER BY (hotel_id ASC) ;

CREATE TABLE hotel.hotels (

104 | Chapter5: Data Modeling



id text PRIMARY KEY,
name text,
phone text,
address frozen<address>,
pois set<text>
) WITH comment = 'Q2. Find information about a hotel';

CREATE TABLE hotel.pois_by_hotel (
poi_name text,
hotel_1id text,
description text,
PRIMARY KEY ((hotel_id), poi_name)
) WITH comment = 'Q3. Find poils near a hotel';

CREATE TABLE hotel.available_rooms_by_hotel_date (
hotel_1id text,
date date,
room_number smallint,
is_available boolean,
PRIMARY KEY ((hotel_id), date, room_number)
) WITH comment = 'Q4. Find available rooms by hotel / date';

CREATE TABLE hotel.amenities_by_room (

hotel_1id text,

room_number smallint,

amenity_name text,

description text,

PRIMARY KEY ((hotel_id, room_number), amenity_name)
) WITH comment = 'Q5. Find amenities for a room';

Identify Partition Keys Explicitly

We recommend representing tables by surrounding the elements of
your partition key with parentheses, even though the partition key
consists of the single column poi_name. This is a best practice that
makes your selection of partition key more explicit to others read-
ing your CQL.

Similarly, here is the schema for the reservation keyspace:

CREATE KEYSPACE reservation
WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

CREATE TYPE reservation.address (
street text, city text,
state_or_province text,
postal_code text,
country text

);

CREATE TABLE reservation.reservations_by_confirmation (
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confirm_number text,
hotel_1id text,
start_date date,
end_date date,
room_number smallint,
guest_1id uuid,
PRIMARY KEY (confirm_number)
) WITH comment = 'Q6. Find reservations by confirmation number';

CREATE TABLE reservation.reservations_by _hotel_date (
hotel_1id text,
start_date date,
end_date date,
room_number smallint,
confirm_number text,
guest_1id uuid,
PRIMARY KEY ((hotel_id, start_date), room_number)
) WITH comment = 'Q7. Find reservations by hotel and date';

CREATE TABLE reservation.reservations_by guest (
guest_last_name text,
hotel_1id text,
start_date date,
end_date date,
room_number smallint,
confirm_number text,
guest_1id uuid,
PRIMARY KEY ((guest_last_name), hotel_1id)
) WITH comment = 'Q8. Find reservations by guest name';

CREATE TABLE reservation.guests (
guest_id uuid PRIMARY KEY,
first_name text,
last_name text,
title text,
emails set<text>,
phone_numbers list<text>,
addresses map<text, frozen<address>>,
confirm_number text
) WITH comment = 'Q9. Find guest by ID';

You now have a complete Cassandra schema for storing data for your hotel applica-
tion.

Cassandra Data Modeling Tools

You've already had quite a bit of practice creating schema and manipluating data
using cqlsh, but now that you're starting to create an application data model with
more tables, it starts to be more of a challenge to keep track of all of that CQL.
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Thankfully, there are several tools available to help you design and manage your Cas-
sandra schema and build queries.

Hackolade
Hackolade is a data modeling tool that supports schema design for Cassandra
and many other NoSQL databases. Hackolade supports the unique concepts of
CQL, such as partition keys and clustering columns, as well as data types, includ-
ing collections and UDTs. It also provides the ability to create Chebotko dia-
grams, as described in this chapter. Figure 5-11 shows an entity-relationship
diagram representing the conceptual data model from this chapter.

Figure 5-11. An entity-relationship diagram for hotel and reservation data in Hackolade

Kashlev Data Modeler
The Kashlev Data Modeler is a Cassandra data modeling tool that automates the
data modeling methodology described in this chapter, including identifying
access patterns; conceptual, logical, and physical data modeling; and schema gen-
eration. It also includes model patterns that you can optionally leverage as a start-
ing point for your designs.

DataStax DevCenter
DataStax DevCenter is a tool for managing schema, executing queries, and view-
ing results. While the tool is no longer actively supported, it is still popular with
many developers and is available as a free download from DataStax. Figure 5-12
shows the hotel schema being edited in DevCenter.

The middle pane shows the currently selected CQL file, featuring syntax high-
lighting for CQL commands, CQL types, and name literals. DevCenter provides
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command completion as you type out CQL commands, and interprets the com-
mands you type, highlighting any errors you make. The tool provides panes for
managing multiple CQL scripts and connections to multiple clusters. The con-
nections are used to run CQL commands against live clusters and view the
results. The tool also has a query trace feature that is useful for gaining insight
into the performance of your queries.
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Figure 5-12. Editing the hotel schema in DataStax DevCenter

IDE plug-ins
CQL plug-ins are available for several integrated development environments
(IDEs), such as Intelli] IDEA and Apache NetBeans. These plug-ins typically pro-
vide features such as schema management and query execution.

Make Sure Your Tools Have Full CQL Support

Some IDEs and tools that claim to support Cassandra do not
actually support CQL natively, but instead access Cassandra using a
JDBC/ODBC driver and interact with Cassandra as if it were a
relational database with SQL support. When selecting tools for
working with Cassandra, you’ll want to make sure they support
CQL and reinforce Cassandra best practices for data modeling, as
discussed in this chapter.
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Summary

In this chapter, you learned how to create a complete, working Cassandra data model
and compared it with an equivalent relational model. You represented the data model
in both logical and physical forms, and learned about tools for realizing your data
models in CQL. Now that you have a working data model, youre ready to continue
building a hotel application in the coming chapters.
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CHAPTER 6
The Cassandra Architecture

3.2 Architecture— fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution.

—ISO/IEC/IEEE 42010

In this chapter, we examine several aspects of Cassandras architecture in order to
understand how it does its job. We'll explain the topology of a cluster, and how nodes
interact in a peer-to-peer design to maintain the health of the cluster and exchange
data, using techniques like gossip, repair, hinted handoff, and lightweight transac-
tions. Looking inside the design of a node, we examine architecture techniques Cas-
sandra uses to support reading, writing, and deleting data, and examine how these
choices affect architectural considerations such as scalability, durability, availability,
manageability, and more. We'll also learn about the data structures inside a node,
including commitlogs, memtables, caches, and SSTables.

As we introduce these topics, we also provide references to where you can find their
implementations in the Cassandra source code.

Data Centers and Racks

Cassandra is frequently used in systems spanning physically separate locations. Cas-
sandra provides two levels of grouping that are used to describe the topology of a
cluster: data center and rack. A rack is a logical set of nodes in close proximity to each
other, perhaps on physical machines in a single rack of equipment. A data center is a
logical set of racks, perhaps located in the same building and connected by reliable
network. A sample topology with multiple data centers and racks is shown in
Figure 6-1.

m



Data Center 1 Data Center 2

Rack 1 Rack 2 Rack 1 Rack 2

Node 1a Node 2a Node 1a Node 2a

Node 1b Node 2b Node 1b Node 2b

Node 1c Node 2c Node 1c Node 2c

Node 1d Node 2d Node 1d Node 2d

\ J \ J

Figure 6-1. Topology of a sample cluster with data centers, racks, and nodes

Out of the box, Cassandra comes with a simple default configuration of a single data
center ("datacenter1") containing a single rack ("rack1"). We'll learn in Chapter 10
how to build a larger cluster and define its topology.

Cassandra leverages the information you provide about your cluster’s topology to
determine where to store data, and how to route queries efficiently. Cassandra stores
copies of your data in the data centers you request to maximize availability and parti-
tion tolerance, while preferring to route queries to nodes in the local data center to
maximize performance.

Gossip and Failure Detection

To support decentralization and partition tolerance, Cassandra uses a gossip protocol
that allows each node to keep track of state information about the other nodes in the
cluster. The gossiper runs every second on a timer.

Gossip protocols (sometimes called epidemic protocols) generally assume a faulty net-
work, are commonly employed in very large, decentralized network systems, and are
often used as an automatic mechanism for replication in distributed databases. They
take their name from the concept of human gossip, a form of communication in
which peers can choose with whom they want to exchange information.
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The Origin of Gossip Protocol

The term gossip protocol was originally coined in 1987 by Alan
Demers, a researcher at Xerox’s Palo Alto Research Center, who
was studying ways to route information through unreliable net-
works.

The gossip protocol in Cassandra is primarily implemented by the org.apache.cas
sandra.gms.Gossiper class, which is responsible for managing gossip for the local
node. When a server node is started, it registers itself with the gossiper to receive
endpoint state information.

Because Cassandra gossip is used for failure detection, the Gossiper class maintains a
list of nodes that are alive and dead.

Here is how the gossiper works:

1. Once per second, the gossiper will choose a random node in the cluster and initi-
alize a gossip session with it. Each round of gossip requires three messages.

2. The gossip initiator sends its chosen friend a GossipDigestSyn message.
3. When the friend receives this message, it returns a GossipDigestAck message.

4. When the initiator receives the ack message from the friend, it sends the friend a
GossipDigestAck2 message to complete the round of gossip.

When the gossiper determines that another endpoint is dead, it “convicts” that end-
point by marking it as dead in its local list and logging that fact.

Cassandra has robust support for failure detection, as specified by a popular algo-
rithm for distributed computing called Phi Accrual Failure Detector. This manner of
failure detection originated at the Advanced Institute of Science and Technology in
Japan in 2004.

Accrual failure detection is based on two primary ideas. The first general idea is that
failure detection should be flexible, which is achieved by decoupling it from the appli-
cation being monitored. The second and more novel idea challenges the notion of
traditional failure detectors, which are implemented by simple “heartbeats” and
decide whether a node is dead or not dead based on whether a heartbeat is received
or not. But accrual failure detection decides that this approach is naive, and finds a
place in between the extremes of dead and alive—a suspicion level.

Therefore, the failure monitoring system outputs a continuous level of “suspicion”
regarding how confident it is that a node has failed. This is desirable because it can
take into account fluctuations in the network environment. For example, just because
one connection gets caught up doesn’t necessarily mean that the whole node is dead.
So suspicion offers a more fluid and proactive indication of the weaker or stronger
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possibility of failure based on interpretation (the sampling of heartbeats), as opposed
to a simple binary assessment.

Phi Threshold and Accrual Failure Detectors

Accrual failure detectors output a value associated with each process (or node) called
Phi. The Phi value represents the level of suspicion that a server might be down. The
computation of this value is designed to be adaptive in the face of volatile network
conditions, so it’s not a binary condition that simply checks whether a server is up or
down.

The Phi convict threshold in the configuration adjusts the sensitivity of the failure
detector. Lower values increase the sensitivity and higher values decrease it, but not in
a linear fashion. With default settings, Cassandra can generally detect a failed node in
about 10 seconds using this mechanism.

You can read the original Phi Accrual Failure Detector paper by Naohiro Hayashibara
et al. at http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.80.7427&rep=rep1type=pdyf.

Failure detection is implemented in Cassandra by the org.apache.cassan
dra.gms.FailureDetector class, which implements the org.apache.cassan
dra.gms.IFailureDetector interface. Together, they allow operations including:

isAlive(InetAddressAndPort)
What the detector will report about a given node’s alive-ness.

interpret(InetAddressAndPort)
Used by the gossiper to help it decide whether a node is alive or not based on the
suspicion level reached by calculating Phi (as described in the Hayashibara

paper).

report(InetAddressAndPort)
When a node receives a heartbeat, it invokes this method.

Snitches

The job of a snitch is to provide information about your network topology so that
Cassandra can efficiently route requests. The snitch will figure out where nodes are in
relation to other nodes. The snitch will determine relative host proximity for each
node in a cluster, which is used to determine which nodes to read and write from.

As an example, let’s examine how the snitch participates in a read operation. When
Cassandra performs a read, it must contact a number of replicas determined by the
consistency level. In order to support the maximum speed for reads, Cassandra
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selects a single replica to query for the full object, and asks additional replicas for
hash values in order to ensure the latest version of the requested data is returned. The
snitch helps to help identify the replica that will return the fastest, and this is the rep-
lica which is queried for the full data.

The default snitch (the SimpleSnitch) is topology unaware; that is, it does not know
about the racks and data centers in a cluster, which makes it unsuitable for multiple
data center deployments. For this reason, Cassandra comes with several snitches for
different network topologies and cloud environments, including Amazon EC2, Goo-
gle Cloud, and Apache Cloudstack.

The snitches can be found in the package org.apache.cassandra.locator. Each
snitch implements the IEndpointSnitch interface. We'll learn how to select and con-
figure an appropriate snitch for your environment in Chapter 10.

While Cassandra provides a pluggable way to statically describe your cluster’s topol-
ogy, it also provides a feature called dynamic snitching that helps optimize the routing
of reads and writes over time. Here’s how it works. Your selected snitch is wrapped
with another snitch called the DynamicEndpointSnitch. The dynamic snitch gets its
basic understanding of the topology from the selected snitch. It then monitors the
performance of requests to the other nodes, even keeping track of things like which
nodes are performing compaction. The performance data is used to select the best
replica for each query. This enables Cassandra to avoid routing requests to replicas
that are busy or performing poorly.

The dynamic snitching implementation uses a modified version of the Phi failure
detection mechanism used by gossip. The badness threshold is a configurable parame-
ter that determines how much worse a preferred node must perform than the best-
performing node in order to lose its preferential status. The scores of each node are
reset periodically in order to allow a poorly performing node to demonstrate that it
has recovered and reclaim its preferred status.

Rings and Tokens

So far we've been focusing on how Cassandra keeps track of the physical layout of
nodes in a cluster. Let’s shift gears and look at how Cassandra distributes data across
these nodes.

Cassandra represents the data managed by a cluster as a ring. Each node in the ring is
assigned one or more ranges of data described by a token, which determines its posi-
tion in the ring. For example, in the default configuration, a token is a 64-bit integer
ID used to identify each partition. This gives a possible range for tokens from —2% to
29—1. We'll discuss other possible configurations under “Partitioners” on page 118.

Ringsand Tokens | 115



A node claims ownership of the range of values less than or equal to each token and
greater than the last token of the previous node, known as a token range. The node
with the lowest token owns the range less than or equal to its token and the range
greater than the highest token, which is also known as the wrapping range. In this
way, the tokens specify a complete ring. Figure 6-2 shows a notional ring layout
including the nodes in a single data center. This particular arrangement is structured
such that consecutive token ranges are spread across nodes in different racks.

Token Ring

263.1 | 263
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Figure 6-2. Example ring arrangement of nodes in a data center

Data is assigned to nodes by using a hash function to calculate a token for the parti-
tion key. This partition key token is compared to the token values for the various
nodes to identify the range, and therefore the node, that owns the data. Token ranges
are represented by the org.apache.cassandra.dht.Range class.

To see an example of tokens in action, let’s revisit our user table from Chapter 4. The
CQL language provides a token() function that we can use to request the value of the
token corresponding to a partition key, in this case the last_name:

cqlsh:my_keyspace> SELECT last_name, first_name, token(last_name) FROM user;

last_name | first_name | system.token(last_name)
___________ S
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Rodriguez | Mary | -7199267019458681669
Scott | Isatiah | 1807799317863611380
Nguyen | Bill | 6000710198366804598
Nguyen | Wanda | 6000710198366804598

(5 rows)

As you might expect, we see a different token for each partition, and the same token
appears for the two rows represented by the partition key value “Nguyen””

Virtual Nodes

Early versions of Cassandra assigned a single token (and therefore by implication, a
single token range) to each node, in a fairly static manner, requiring you to calculate
tokens for each node. Although there are tools available to calculate tokens based on
a given number of nodes, it was still a manual process to configure the inti
tial_token property for each node in the cassandra.yaml file. This also made adding
or replacing a node an expensive operation, as rebalancing the cluster required mov-
ing a lot of data.

Cassandra’s 1.2 release introduced the concept of virtual nodes, also called vnodes for
short. Instead of assigning a single token to a node, the token range is broken up into
multiple smaller ranges. Each physical node is then assigned multiple tokens. Histori-
cally, each node has been assigned 256 of these tokens, meaning that it represents 256
virtual nodes (although we'll discuss possible changes to this value in Chapter 10).
Virtual nodes have been enabled by default since 2.0.

Vnodes make it easier to maintain a cluster containing heterogeneous machines. For
nodes in your cluster that have more computing resources available to them, you can
increase the number of vnodes by setting the num_tokens property in the cassan-
dra.yaml file. Conversely, you might set num_tokens lower to decrease the number of
vnodes for less capable machines.

Cassandra automatically handles the calculation of token ranges for each node in the
cluster in proportion to their num_tokens value. Token assignments for vnodes are
calculated by the org.apache.cassandra.dht.tokenallocator.ReplicationAware
TokenAllocator class.

A further advantage of virtual nodes is that they speed up some of the more heavy-
weight Cassandra operations such as bootstrapping a new node, decommissioning a
node, and repairing a node. This is because the load associated with operations on
multiple smaller ranges is spread more evenly across the nodes in the cluster.
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Partitioners

A partitioner determines how data is distributed across the nodes in the cluster. As we
learned in Chapter 4, Cassandra organizes rows in partitions. Each row has a parti-
tion key that is used to identify the partition to which it belongs. A partitioner, then,
is a hash function for computing the token of a partition key. Each row of data is dis-
tributed within the ring according to the value of the partition key token. As shown
in Figure 6-3, the role of the partitioner is to compute the token based on the parti-
tion key columns. Any clustering columns that may be present in the primary key are
used to determine the ordering of rows within a given node that owns the token rep-
resenting that partition.

Partition key column(s)

L L]

Clustering column(s)

LI

- - Primary key
m o~ .

Figure 6-3. The role of the partitioner

Cassandra Node I

Cassandra provides several different partitioners in the org.apache.cassandra.dht
package (DHT stands for distributed hash table). The Murmur3Partitioner was added
in 1.2 and has been the default partitioner since then; it is an efficient Java implemen-
tation on the murmur algorithm developed by Austin Appleby. It generates 64-bit
hashes. The previous default was the RandomPartitioner.

Because of Cassandra’s generally pluggable design, you can also create your own par-
titioner by implementing the org.apache.cassandra.dht.IPartitioner class and
placing it on Cassandra’s classpath. Note, however, that the default partitioner is not
frequently changed in practice, and that that you can’t change the partitioner after
initializing a cluster.
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Replication Strategies

A node serves as a replica for different ranges of data. If one node goes down, other
replicas can respond to queries for that range of data. Cassandra replicates data across
nodes in a manner transparent to the user, and the replication factor is the number of
nodes in your cluster that will receive copies (replicas) of the same data. If your repli-
cation factor is 3, then three nodes in the ring will have copies of each row.

The first replica will always be the node that claims the range in which the token falls,
but the remainder of the replicas are placed according to the replication strategy
(sometimes also referred to as the replica placement strategy).

For determining replica placement, Cassandra implements the Gang of Four strategy
pattern, which is outlined in the common abstract class org.apache.cassandra. loca
tor.AbstractReplicationStrategy, allowing different implementations of an algo-
rithm (different strategies for accomplishing the same work). Each algorithm
implementation is encapsulated inside a single class that extends the AbstractRepli
cationStrategy.

Out of the box, Cassandra provides two primary implementations of this interface
(extensions of the abstract class): SimpleStrategy and NetworkTopologyStrategy.
The SimpleStrategy places replicas at consecutive nodes around the ring, starting
with the node indicated by the partitioner. The NetworkTopologyStrategy allows you
to specify a different replication factor for each data center. Within a data center, it
allocates replicas to different racks in order to maximize availability. The NetworkTo
pologyStrategy is recommended for keyspaces in production deployments, even
those that are initially created with a single data center, since it is more straightfor-
ward to add an additional data center should the need arise.

Legacy Replication Strategies

A third strategy, OldNetworkTopologyStrategy, is provided for
backward compatibility. It was previously known as the RackAwar
eStrategy, while the SimpleStrategy was previously known as the
RackUnawareStrategy. NetworkTopologyStrategy was previously
known as DataCenterShardStrategy. These changes were effective
in the 0.7 release.

The strategy is set independently for each keyspace and is a required option to create
a keyspace, as we saw in Chapter 4.
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Consistency Levels

In Chapter 2, we discussed Brewer’s CAP theorem, in which consistency, availability,
and partition tolerance are traded off against one another. Cassandra provides tunea-
ble consistency levels that allow you to make these trade-offs at a fine-grained level.
You specify a consistency level on each read or write query that indicates how much
consistency you require. A higher consistency level means that more nodes need to
respond to a read or write query, giving you more assurance that the values present
on each replica are the same.

For read queries, the consistency level specifies how many replica nodes must
respond to a read request before returning the data. For write operations, the consis-
tency level specifies how many replica nodes must respond for the write to be
reported as successful to the client. Because Cassandra is eventually consistent,
updates to other replica nodes may continue in the background.

The available consistency levels include ONE, TWO, and THREE, each of which specify an
absolute number of replica nodes that must respond to a request. The QUORUM consis-
tency level requires a response from a majority of the replica nodes. This is some-
times expressed as:

Q = floor(RF/2 + 1)

In this equation, Q represents the number of nodes needed to achieve quorum for a
replication factor RF. It may be simpler to illustrate this with a couple of examples: if
RFis 3,Qis2;if RFis 4, Qis 3;if RFis 5, Qis 3, and so on.

The ALL consistency level requires a response from all of the replicas. We'll examine
these consistency levels and others in more detail in Chapter 9.

Consistency is tuneable in Cassandra because clients can specify the desired consis-
tency level on both reads and writes. There is an equation that is popularly used to
represent the way to achieve strong consistency in Cassandra: R + W > RF = strong
consistency. In this equation, R, W, and RF are the read replica count, the write replica
count, and the replication factor, respectively; all client reads will see the most recent
write in this scenario, and you will have strong consistency. As we discuss in more
detail in Chapter 9, the recommended way to achieve strong consistency in Cassan-
dra is to write and read using the QUORUM or LOCAL_QUORUM consistency levels.
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Distinguishing Consistency Levels and Replication Factors

If you're new to Cassandra, it can be easy to confuse the concepts
of replication factor and consistency level. The replication factor is
set per keyspace. The consistency level is specified per query, by the
client. The replication factor indicates how many nodes you want
to use to store a value during each write operation. The consistency
level specifies how many nodes the client has decided must
respond in order to feel confident of a successful read or write
operation. The confusion arises because the consistency level is
based on the replication factor, not on the number of nodes in the
system.

Queries and Coordinator Nodes

Let’s bring these concepts together to discuss how Cassandra nodes interact to sup-
port reads and writes from client applications. Figure 6-4 shows the typical path of
interactions with Cassandra.
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Figure 6-4. Clients, coordinator nodes, and replicas

A client may connect to any node in the cluster to initiate a read or write query. This
node is known as the coordinator node. The coordinator identifies which nodes are
replicas for the data that is being written or read and forwards the queries to them.
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For a write, the coordinator node contacts all replicas, as determined by the consis-
tency level and replication factor, and considers the write successful when a number
of replicas commensurate with the consistency level acknowledge the write.

For a read, the coordinator contacts enough replicas to ensure the required consis-
tency level is met, and returns the data to the client.

These, of course, are the “happy path” descriptions of how Cassandra works. In order
to get a full picture of Cassandra’s architecture, we’ll now discuss some of Cassandra’s
high availability mechanisms that it uses to mitigate failures, including hinted hand-
off and repair.

Hinted Handoff

Consider the following scenario: a write request is sent to Cassandra, but a replica
node where the write properly belongs is not available due to network partition,
hardware failure, or some other reason. In order to ensure general availability of the
ring in such a situation, Cassandra implements a feature called hinted handoff. You
might think of a hint as a little Post-it Note that contains the information from the
write request. If the replica node where the write belongs has failed, the coordinator
will create a hint, which is a small reminder that says, “I have the write information
that is intended for node B. 'm going to hang on to this write, and I'll notice when
node B comes back online; when it does, I'll send it the write request” That is, once it
detects via gossip that node B is back online, node A will “hand off” to node B the
“hint” regarding the write. Cassandra holds a separate hint for each partition that is to
be written.

This allows Cassandra to be always available for writes, and generally enables a clus-
ter to sustain the same write load even when some of the nodes are down. It also
reduces the time that a failed node will be inconsistent after it does come back online.

In general, hints do not count as writes for the purposes of consistency level. The
exception is the consistency level ANY, which was added in 0.6. This consistency level
means that a hinted handoff alone will count as sufficient toward the success of a
write operation. That is, even if only a hint was able to be recorded, the write still
counts as successful. Note that the write is considered durable, but the data may not
be readable until the hint is delivered to the target replica.
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Hinted Handoff and Guaranteed Delivery

Hinted handoff is used in Amazon’s Dynamo, which inspired the
design of databases, including Cassandra and Amazon’s Dyna-
moDB. It is also familiar to those who are aware of the concept of
guaranteed delivery in messaging systems such as the Java Message
Service (JMS). In a durable guaranteed-delivery JMS queue, if a
message cannot be delivered to a receiver, JMS will wait for a given
interval and then resend the request until the message is received.

There is a practical problem with hinted handoffs (and guaranteed delivery
approaches, for that matter): if a node is offline for some time, the hints can build up
considerably on other nodes. Then, when the other nodes notice that the failed node
has come back online, they tend to flood that node with requests, just at the moment
it is most vulnerable (when it is struggling to come back into play after a failure). To
address this problem, Cassandra limits the storage of hints to a configurable time
window. It is also possible to disable hinted handoff entirely.

As its name suggests, org.apache.cassandra.hints.HintsService is the class that
implements hinted handoffs internally.

Although hinted handoff helps increase Cassandra’s availability, due to the limitations
mentioned above it is not sufficient on its own to ensure consistency of data across
replicas.

Anti-Entropy, Repair, and Merkle Trees

Cassandra uses an anti-entropy protocol as an additional safeguard to ensure consis-
tency. Anti-entropy protocols are a type of gossip protocol for repairing replicated
data. They work by comparing replicas of data and reconciling differences observed
between the replicas. Anti-entropy is used in Amazons Dynamo, and Cassandra’s
implementation is modeled on that (see Section 4.7 of the Dynamo paper).

Anti-Entropy in Cassandra

In Cassandra, the term anti-entropy is often used in two slightly dif-
ferent contexts, with meanings that have some overlap:

o The term is often used as a shorthand for the replica synchro-
nization mechanism for ensuring that data on different nodes
is updated to the newest version.

« At other times, Cassandra is described as having an anti-
entropy capability that includes replica synchronization as well
as hinted handoff.
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Replica synchronization is supported via two different modes known as read repair
and anti-entropy repair. Read repair refers to the synchronization of replicas as data is
read. Cassandra reads data from multiple replicas in order to achieve the requested
consistency level, and detects if any replicas have out-of-date values. If an insufficient
number of nodes have the latest value, a read repair is performed immediately to
update the out-of-date replicas. Otherwise, the repairs can be performed in the back-
ground after the read returns. This design is observed by Cassandra as well as by
straight key-value stores such as Project Voldemort and Riak.

Anti-entropy repair (sometimes called manual repair) is a manually initiated opera-
tion performed on nodes as part of a regular maintenance process. This type of repair
is executed by using a tool called nodetool, as we'll learn about in Chapter 12. Run-
ning nodetool repair causes Cassandra to execute a validation compaction (see
“Compaction” on page 130). During a validation compaction, the server initiates a
TreeRequest/TreeReponse conversation to exchange Merkle trees with neighboring
replicas. The Merkle tree is a hash representing the data in that table. If the trees from
the different nodes don’t match, they have to be reconciled (or “repaired”) to deter-
mine the latest data values they should all be set to. This tree comparison validation is
the responsibility of the org.apache.cassandra.service.reads.AbstractReadExe
cutor class.

What's a Merkle Tree?

A MerKkle tree, named for its inventor, Ralph Merkle, is also known as a hash tree. It's a
data structure represented as a binary tree, and it’s useful because it summarizes in
short form the data in a larger data set. In a hash tree, the leaves are the data blocks
(typically files on a filesystem) to be summarized. Every parent node in the tree is a
hash of its direct child nodes, which tightly compacts the summary.

In Cassandra, the Merkle tree is implemented in the org.apache.cassan
dra.utils.MerkleTree class.

Merkle trees are used in Cassandra to ensure that the peer-to-peer network of nodes
receives data blocks unaltered and unharmed. They are also used in cryptography to
verify the contents of files and transmissions.

Both Cassandra and Dynamo use Merkle trees for anti-entropy, but their implemen-
tations are a little different. In Cassandra, each table has its own Merkle tree; the tree
is created as a snapshot during a validation compaction, and is kept only as long as is
required to send it to the neighboring nodes on the ring. The advantage of this imple-
mentation is that it reduces network I/O.
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Lightweight Transactions and Paxos

As we discussed in “Consistency Levels” on page 120, Cassandra provides the ability
to achieve strong consistency by specifying sufficiently high consistency levels on
writes and reads. However, strong consistency is not enough to prevent race condi-
tions in cases where clients need to read, then write data.

To help explain this with an example, let’s revisit our my_keyspace.user table from
Chapter 4. Imagine we are building a client that wants to manage user records as part
of an account management application. In creating a new user account, wed like to
make sure that the user record doesn’t already exist, lest we unintentionally overwrite
existing user data. So first we do a read to see if the record exists, and then only per-
form the create if the record doesn’t exist.

The behavior were looking for is called linearizable consistency, meaning that wed
like to guarantee that no other client can come in between our read and write queries
with their own modification. Since the 2.0 release, Cassandra supports a lightweight
transaction (LWT) mechanism that provides linearizable consistency.

Cassandra’s LWT implementation is based on Paxos. Paxos is a consensus algorithm
that allows distributed peer nodes to agree on a proposal, without requiring a leader
to coordinate a transaction. Paxos and other consensus algorithms emerged as alter-
natives to traditional two-phase commit-based approaches to distributed transactions
(see the note, The Problem with Two-Phase Commit).

The basic Paxos algorithm consists of two stages: prepare/promise and propose/
accept. To modify data, a coordinator node can propose a new value to the replica
nodes, taking on the role of leader. Other nodes may act as leaders simultaneously for
other modifications. Each replica node checks the proposal, and if the proposal is the
latest it has seen, it promises to not accept proposals associated with any prior pro-
posals. Each replica node also returns the last proposal it received that is still in pro-
gress. If the proposal is approved by a majority of replicas, the leader commits the
proposal, but with the caveat that it must first commit any in-progress proposals that
preceded its own proposal.

The Cassandra implementation extends the basic Paxos algorithm to support the
desired read-before-write semantics (also known as check-and-set), and to allow the
state to be reset between transactions. It does this by inserting two additional phases
into the algorithm, so that it works as follows:

1. Prepare/Promise
2. Read/Results
3. Propose/Accept
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4. Commit/Ack

Thus, a successful transaction requires four round-trips between the coordinator
node and replicas. This is more expensive than a regular write, which is why you
should think carefully about your use case before using LWTs.

More on Paxos

Several papers have been written about the Paxos protocol. One of
the best explanations available is Leslie Lamports “Paxos Made
Simple”

Cassandra’s lightweight transactions are limited to a single partition. Internally, Cas-
sandra stores a Paxos state for each partition. This ensures that transactions on differ-
ent partitions cannot interfere with each other.

You can find Cassandra’s implementation of the Paxos algorithm in the package
org.apache.cassandra.service.paxos. These classes are leveraged by the Storage
Service, which we will learn about soon. We discuss LWTs in more detail in Chap-
ter 9.

Memtables, SSTables, and Commit Logs

Now let’s take a look inside a Cassandra node at some of the internal data structures
and files, summarized in Figure 6-5. Cassandra stores data both in memory and on
disk to provide both high performance and durability. In this section, we'll focus on
Cassandra’s storage engine and its use of constructs called memtables, SSTables, and
commit logs to support the writing and reading of data from tables.
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Figure 6-5. Internal data structures and files of a Cassandra node

When a node receives a write operation, it immediately writes the data to a commit
log. The commit log is a crash-recovery mechanism that supports Cassandra’s dura-
bility goals. A write will not count as successful on the node until it’s written to the
commit log, to ensure that if a write operation does not make it to the in-memory
store (the memtable, discussed in a moment), it will still be possible to recover the
data. If you shut down the node or it crashes unexpectedly, the commit log can
ensure that data is not lost. That’s because the next time you start the node, the com-
mit log gets replayed. In fact, that’s the only time the commit log is read; clients never
read from it.

cqlsh> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication =
{'class': 'SimpleStrategy',
'replication_factor': '1'} AND durable_writes = true;
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What Are Durable Writes?

Now that we've introduced the concept of the commit log, it’s a
good time for us to demystify a property of a keyspace that we first
noticed in Chapter 3:

cqlsh> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication =
{'class': 'SimpleStrategy',
'replication_factor': '1'} AND durable_writes =
true;

The durable_writes property controls whether Cassandra will use
the commit log for writes to the tables in the keyspace. This value
defaults to true, meaning that the commit log will be updated on
modifications. Setting the value to false increases the speed of
writes, but also risks losing data if the node goes down before the
data is flushed from memtables into SSTables.

After it's written to the commit log, the value is written to a memory-resident data
structure called the memtable. Each memtable contains data for a specific table. In
early implementations of Cassandra, memtables were stored on the JVM heap, but
improvements starting with the 2.1 release have moved some memtable data to native
memory, with configuration options to specify the amount of on-heap and native
memory available. This makes Cassandra less susceptible to fluctuations in perfor-
mance due to Java garbage collection. Optionally, Cassandra may also write data to in
memory key or row caches, which we'll discuss below.

When the number of objects stored in the memtable reaches a threshold, the contents
of the memtable are flushed to disk in a file called an SSTable. A new memtable is
then created. This flushing is a nonblocking operation; multiple memtables may exist
for a single table, one current and the rest waiting to be flushed. They typically should
not have to wait very long, as the node should flush them very quickly unless it is
overloaded.

Why Are They Called “SSTables"?

The term “SSTable” originated in Google Bigtable as a compaction
of “Sorted String Table” Cassandra borrows this term even though
it does not store data as strings on disk.

Each commit log maintains an internal bit flag to indicate whether it needs flushing.
When a write operation is first received, it is written to the commit log and its bit flag
is set to 1. There is only one bit flag per table, because only one commit log is ever
being written to across the entire server. All writes to all tables will go into the same
commit log, so the bit flag indicates whether a particular commit log contains any-
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thing that hasn’t been flushed for a particular table. Once the memtable has been
properly flushed to disk, the corresponding commit log’s bit flag is set to 0, indicating
that the commit log no longer has to maintain that data for durability purposes. Like
regular logfiles, commit logs have a configurable rollover threshold, and once this file
size threshold is reached, the log will roll over, carrying with it any extant dirty bit
flags.

Once a memtable is flushed to disk as an SSTable, it is immutable and cannot be
changed by the application. Despite the fact that SSTables are compacted, this com-
paction changes only their on-disk representation; it essentially performs the “merge”
step of a mergesort into new files and removes the old files on success.

Since the 1.0 release, Cassandra has supported the compression of SSTables in order
to maximize use of the available storage. This compression is configurable per table.

All writes are sequential, which is the primary reason that writes perform so well in
Cassandra. No reads or seeks of any kind are required for writing a value to Cassan-
dra because all writes are append operations. This makes the speed of your disk one
key limitation on performance. Compaction is intended to amortize the reorganiza-
tion of data, but it uses sequential I/O to do so. So the performance benefit is gained
by splitting; the write operation is just an immediate append, and then compaction
helps to organize for better future read performance. If Cassandra naively inserted
values where they ultimately belonged, writing clients would pay for seeks up front.

On reads, Cassandra will read both SSTables and memtables to find data values, as
the memtable may contain values that have not yet been flushed to disk. Memtables
are implemented by the org.apache.cassandra.db.Memtable class.

Bloom Filters

Bloom filters are used to boost the performance of reads. They are named for their
inventor, Burton Bloom. Bloom filters are very fast, nondeterministic algorithms for
testing whether an element is a member of a set. They are nondeterministic because it
is possible to get a false-positive read from a Bloom filter, but not a false-negative.
Bloom filters work by mapping the values in a data set into a bit array and condens-
ing a larger data set into a digest string using a hash function. The digest, by defini-
tion, uses a much smaller amount of memory than the original data would. The filters
are stored in memory and are used to improve performance by reducing the need for
disk access on key lookups. Disk access is typically much slower than memory access.
So, in a way, a Bloom filter is a special kind of key cache.

Cassandra maintains a Bloom filter for each SSTable. When a query is performed, the
Bloom filter is checked first before accessing disk. Because false-negatives are not
possible, if the filter indicates that the element does not exist in the set, it certainly
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doesn’t; but if the filter thinks that the element is in the set, the disk is accessed to
make sure.

Bloom filters are implemented by the org.apache.cassandra.utils.BloomFilter
class. Cassandra provides the ability to increase Bloom filter accuracy (reducing the
number of false-positives) by increasing the filter size, at the cost of more memory.
This false-positive chance is tuneable per table.

Other Uses of Bloom Filters

Bloom filters are used in other distributed database and caching
technologies, including Apache Hadoop, Google Bigtable, and the
Squid proxy cache.

Caching

As an additional mechanism to boost read performance, Cassandra provides three
optional forms of caching:

o The key cache stores a map of partition keys to row index entries, facilitating
faster read access into SSTables stored on disk. The key cache is stored on the
JVM heap.

o The row cache caches entire rows and can greatly speed up read access for fre-
quently accessed rows, at the cost of more memory usage. The row cache is
stored in off-heap memory.

o The counter cache was added in the 2.1 release to improve counter performance
by reducing lock contention for the most frequently accessed counters.

By default, key and counter caching are enabled, while row caching is disabled, as it
requires more memory. Cassandra saves its caches to disk periodically in order to
warm them up more quickly on a node restart. We'll investigate how to tune these
caches in Chapter 13.

Compaction

As we already discussed, SSTables are immutable, which helps Cassandra achieve
such high write speeds. However, periodic compaction of these SSTables is important
in order to support fast read performance and clean out stale data values. A compac-
tion operation in Cassandra is performed in order to merge SSTables. During com-
paction, the data in SSTables is merged: the keys are merged, columns are combined,
obsolete values are discarded, and a new index is created.

Compaction is the process of freeing up space by merging large accumulated data-
files. This is roughly analogous to rebuilding a table in the relational world. But the
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primary difference in Cassandra is that it is intended as a transparent operation that
is amortized across the life of the server.

On compaction, the merged data is sorted, a new index is created over the sorted
data, and the freshly merged, sorted, and indexed data is written to a single new
SSTable (each SSTable consists of multiple files, including Data, Index, and Filter).
This process is managed by the class org.apache.cassandra.db.compaction.Compac
tionManager.

Another important function of compaction is to improve performance by reducing
the number of required seeks. There is a bounded number of SSTables to inspect to
find the column data for a given key. If a key is frequently mutated, it’s very likely that
the mutations will all end up in flushed SSTables. Compacting them prevents the
database from having to perform a seek to pull the data from each SSTable in order to
locate the current value of each column requested in a read request.

When compaction is performed, there is a temporary spike in disk I/O and the size of
data on disk while old SSTables are read and new SSTables are being written.

Cassandra supports multiple algorithms for compaction via the strategy pattern. The
compaction strategy is an option that is set for each table. The compaction strategy
extends the AbstractCompactionStrategy class. The available strategies include:

o SizeTieredCompactionStrategy (STCS) is the default compaction strategy and
is recommended for write-intensive tables

o LeveledCompactionStrategy (LCS) is recommended for read-intensive tables

o TimeWindowCompactionStrategy (TWCS) is intended for time series or other-
wise date-based data.

We'll revisit these strategies in Chapter 13 to discuss selecting the best strategy for
each table.

One interesting feature of compaction relates to its intersection with incremental
repair. A feature called anticompaction was added in 2.1. As the name implies, anti-
compaction is somewhat of an opposite operation to regular compaction in that the
result is the division of an SSTable into two SSTables, one containing repaired data,
and the other containing unrepaired data.

The trade-off is that more complexity is introduced into the compaction strategies,
which must handle repaired and unrepaired SSTables separately so that they are not
merged together.
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What About Major Compaction?

Users with prior experience may recall that Cassandra exposes an
administrative operation called major compaction (also known as
full compaction) that consolidates multiple SSTables into a single
SSTable. While this feature is still available, the utility of perform-
ing a major compaction has been greatly reduced over time. In fact,
usage is actually discouraged in production environments, as it
tends to limit Cassandra’s ability to remove stale data. We'll learn
more about this and other administrative operations on SSTables
available via nodetool in Chapter 12.

Log Structured Merge Trees

The basic design of Cassandra’s storage engine that we've described in this chapter is
shared with several other databases modeled after the Google Bigtable paper, which
itself draws inspiration from the 1996 paper by Patrick O’Neil et al., “http://cite-
seerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.2782&rep=rep1&type=pdf[ The
Log-Structured Merge-Tree (LSM-Tree)]”

The LSM-Tree paper describes a data structure proposed as an improvement over the
B-Trees previously dominant in storage design in which data is updated in place. The
basic idea of the design is that data is stored first in memory and then over time is
cascaded, or merged into one or more stages of files on disk using a merge-sort algo-
rithm. The design was originally intended to take advantage of the fact that sequential
writes to spinning disk are faster than random access, although it works equally well
on modern SSD-based storage.

The Bigtable paper introduced the terms memtable and SSTable for the in-memory
and on-disk components of the pattern, and established common design elements,
including the initial storage of data in memtables, the use of a write-ahead log for
durability, periodic storage of sorted data on disk in immutable SSTables, the use of
memtables and Bloom filters to index into SSTables for fast reads, and compaction as
a background process to consolidate SSTables.

Databases which conform to this pattern are commonly referred to as LSM-Tree data-
bases and include both simple storage engines such as RocksDB and LevelDB, as well
as distributed databases such as Cassandra and HBase. LSM-Tree databases are
known for their high write throughput due to the append-only storage model. Reads
are not quite as fast but are aided by the use of Bloom filters and SSTable indexes.

Deletion and Tombstones

We've already discussed several common distributed system approaches that Cassan-
dra uses to handle failure gracefully. Another interesting case has to do with deleting

132 | Chapter 6: The Cassandra Architecture



data. Because a node could be down or unreachable when data is deleted, that node
could miss a delete. When that node comes back online later and a repair occurs, the
node could “resurrect” the data that had been previously deleted by re-sharing it with
other nodes.

To prevent deleted data from being reintroduced, Cassandra uses a concept called a
tombstone. A tombstone is a marker that is kept to indicate data that has been deleted.
When you execute a delete operation, the data is not immediately deleted. Instead, it’s
treated as an update operation that places a tombstone on the value.

A tombstone is similar to the idea of a “soft delete” from the relational world. Instead
of actually executing a delete SQL statement, the application will issue an update
statement that changes a value in a column called something like “deleted.” Program-
mers sometimes do this to support audit trails, for example.

Tombstones are not kept forever, instead they are removed as part of compaction.
There is a setting per table called gc_grace_seconds (Garbage Collection Grace Sec-
onds) which represents the amount of time that nodes will wait to garbage collect (or
compact) tombstones. By default, it’s set to 864,000 seconds, the equivalent of 10 days.
Cassandra keeps track of tombstone age, and once a tombstone is older than
gc_grace_seconds, it will be garbage collected. The purpose of this delay is to give a
node that is unavailable time to recover; if a node is down longer than this value, then
it should be treated as failed and replaced.

Managers and Services

While we've referenced several locations in the Cassandra source code in this chapter,
it's a good idea to get an overall sense of how the codebase is structured. There is a set
of classes that form Cassandra’s basic internal control mechanisms. We've encoun-
tered a few of them already, including the HintedHandOffManager, the Compaction
Manager, and the StageManager. We'll present a brief overview of a few other classes
here so that you can become familiar with some of the more important ones. Many of
these expose MBeans via the Java Management Extension (JMX) in order to report
status and metrics, and in some cases to allow configuration and control of their
activities. We'll learn more about interacting with these MBeans in Chapter 11.

Cassandra Daemon

The org.apache.cassandra.service.CassandraDaemon interface represents the life
cycle of the Cassandra service running on a single node. It includes the typical life
cycle operations that you might expect: start, stop, activate, deactivate, and
destroy.
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You can also create an in-memory Cassandra instance programmatically by using the
class org.apache.cassandra.service.EmbeddedCassandraService. Creating an
embedded instance can be useful for unit testing programs using Cassandra.

Storage Engine

Cassandras core data storage functionality is commonly referred to as the storage
engine, which consists primarily of classes in the org.apache.cassandra.db package.
The main entry point is the ColumnFamilyStore class, which manages all aspects of
table storage, including commit logs, memtables, SSTables, and indexes.

What's a Column Family?

Tables were known as column families in early versions of Cassan-
dra.

A History of Changes to the Storage Engine

The storage engine was largely rewritten for the 3.0 release to bring Cassandra’s in-
memory and on-disk representations of data in alignment with the CQL. An excellent
summary of the changes is provided in the CASSANDRA-8099 Jira issue.

The storage engine rewrite was a precursor for many other changes, most impor-
tantly, support for materialized views, which was implemented under
CASSANDRA-6477. These two Jira issues make for interesting reading if you want to
better understand the changes required “under the hood” to enable these powerful
new features.

Engineers at Instagram have created a Cassandra fork known as Rocksandra in which
the native storage engine is replaced by RocksDB, with the goal of improving Cassan-
dra’s tail write latency. Their proposal to define an API to make the storage engine
pluggable is documented as CASSANDRA-13474.

Storage Service

Cassandra wraps the storage engine with a service represented by the
org.apache.cassandra.service.StorageService class. The storage service contains
the node’s token, which is a marker indicating the range of data that the node is
responsible for.

The server starts up with a call to the initServer method of this class, upon which
the server registers the thread pools used to manage various tasks, makes some deter-
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minations about its state (such as whether it was bootstrapped or not, and what its
partitioner is), and registers an MBean with the JMX server.

Storage Proxy

The org.apache.cassandra.service.StorageProxy sits in front of the StorageSer
vice to handle the work of responding to client requests. It coordinates with other
nodes to store and retrieve data, including storage of hints when needed. The Stora
geProxy also helps manage lightweight transaction processing.

Direct Invocation of the Storage Proxy

Although it is possible to invoke the StorageProxy programmati-
cally, as an in-memory instance, note that this is not considered an
officially supported API for Cassandra and therefore has under-
gone changes between releases.

Messaging Service

The purpose of org.apache.cassandra.net.MessagingService is to manage all
inbound and outbound messages from this node to and from other nodes, except for
SSTable streaming, which we’ll examine next. Incoming messages are routed to the
other services referenced in this section for handling. Outgoing messages may
optionally have callbacks which are invoked when a response is received from the
other node.

4.0 Feature: Asynchronous Internode Messaging

The MessagingService was rewritten for the 4.0 release to make all
of its communications asynchronous using Netty, a nonblocking
I/O client-server framework used to simplify networking for Java
applications.

Stream Manager

Streaming is Cassandras optimized way of sending SSTable files from one node to
another via a persistent TCP connection; all other communication between nodes
occurs via serialized messages. Streaming may occur when tokens need to be realloca-
ted across the cluster, such as when a node is added or removed. Streaming may also
occur during repair processing or when a node is being replaced or rebuilt. We'll
learn more about these operations in Chapter 12.

The org.apache.cassandra.streaming.StreamManager handles these streaming
messages, including connection management, message compression, progress track-
ing, and statistics.
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Zero-Copy Streaming

Traditionally, SSTables have been streamed one partition at a time.
The Cassandra 4.0 release introduced a zero-copy streaming fea-
ture to stream SSTables in their entirety using zero-copying APIs of
the host operating system. These APIs allow files to be transferred
over the network without first copying them into the CPU. This
feature is enabled by default and has been estimated to improve
streaming speed by a factor of 5.

CQL Native Transport Server

The CQL Native Protocol is the binary protocol used by clients to communicate with
Cassandra. The org.apache.cassandra.transport package contains the classes that
implement this protocol, including the Server. This native transport server manages
client connections and routes incoming requests, delegating the work of performing
queries to the StorageProxy.

There are several other classes that manage key features of Cassandra. Table 6-1
shows a few to investigate if you're interested.

Table 6-1. Classes implementing key Cassandra features

Key feature Class

Repair org.apache.cassandra.service.ActiveRepairService
(aching org.apache.cassandra.service.CacheService

Migration org.apache.cassandra.schema.MigrationManager
Materialized views org.apache.cassandra.db.view.ViewManager

Secondary indexes org.apache.cassandra.index.SecondaryIndexManager

Authentication and authorization org.apache.cassandra.auth.PasswordAuthenticator, Cassan
draAuthorizer, CassandraRoleManager

System Keyspaces

In true “dogfooding” style, Cassandra makes use of its own storage to keep track of
metadata about the cluster and local node. This is similar to the way in which Micro-
soft SQL Server maintains the meta-databases master and tempdb. The master is used
to keep information about disk space, usage, system settings, and general server
installation notes; the tempdb is used as a workspace to store intermediate results and
perform general tasks. The Oracle database always has a tablespace called SYSTEM,
used for similar purposes. The Cassandra system keyspaces are used much like these.

Let’s go back to cqlsh and use DESCRIBE TABLES to get a quick overview of the tables
in Cassandra’s system keyspaces:
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cqlsh> DESCRIBE TABLES;

Keyspace system_traces

events sessions

Keyspace system_schema

tables triggers views keyspaces dropped_columns
functions aggregates indexes types columns

Keyspace system_auth

resource_role_permissons_index network_permissions role_permissions
role_members roles

Keyspace system

repairs view_builds_in_progress paxos
available_ranges prepared_statements size_estimates
batches peers built_views
peer_events_v2 compaction_history local
available_ranges_v2 sstable_activity transferred_ranges
peers_v2 peer_events

"IndexInfo" transferred_ranges_v2

Keyspace system_distributed

repair_history view_build_status parent_repair_history

Seeing Different System Keyspaces?

If you're using a version of Cassandra prior to 4.0, you may not see
some of these keyspaces listed. While the basic system keyspace
has been around since the beginning, the system_traces keyspace
was added in 1.2 to support request tracing. The system_auth and
system_distributed keyspaces were added in 2.2 to support role-
based access control (RBAC) and persistence of repair data, respec-
tively. Tables related to schema definition were migrated from
system to the system_schema keyspace in 3.0.

Let’s dig a bit deeper into the contents of Cassandra’s system keyspace:

cqlsh> USE system;
cqlsh:system> DESCRIBE KEYSPACE;

CREATE KEYSPACE system WITH replication =
{'class': 'LocalStrategy'} AND durable_writes = true;

System Keyspaces
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We've truncated the output here because it lists the complete structure of each table.
We'll summarize some of the key tables below. Looking at the first statement in the
output, we see that the system keyspace is using the replication strategy LocalStrat
egy, meaning that this information is intended for internal use and not replicated to
other nodes.

Immutability of the system Keyspaces

Describing the system keyspaces produces similar output to
describing any other keyspace, in that the tables are described using
the CREATE TABLE command syntax. This may be somewhat mis-
leading in this case, as you cannot modify the schema of these sys
tem keyspaces.

Looking over the contents of the tables in the system keyspace, we see that many of
them are related to the concepts discussed in this chapter:

Information about the structure of the cluster communicated via gossip is stored
in system.local and system.peers. These tables hold information about the
local node and other nodes in the cluster, including IP addresses, locations by
data center and rack, token ranges, CQL, and protocol versions.

The system.transferred_ranges and system.available_ranges track token
ranges previously managed by each node and any ranges needing allocation.

The construction of materialized views 1is tracked in the sys
tem.view_builds_in_progress and system.built_views tables, resulting in the
views available in system_schema.views.

User-provided extensions include system_schema. types for user-defined types,
system_schema. triggers for triggers configured per table, system_schema. func
tions for user-defined functions, and system_schema.aggregates for user-
defined aggregates.

The system.paxos table stores the status of transactions in progress, while the
system.batches table stores the status of batches.

The system.size_estimates stores the estimated number of partitions per table
and mean partition size.
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Removal of the system.hints Table

Hinted handoffs have traditionally been stored in the sys
tem.hints table. As thoughtful developers have noted, the fact that
hints are really messages to be kept for a short time and deleted
means this usage is really an instance of the well-known anti-
pattern of using Cassandra as a queue, which is discussed in Chap-
ter 5. Hint storage was moved to flat files in the 3.0 release.

Feel free to explore the contents of some of the other system_* keyspaces using the
DESCRIBE KEYSPACE or DESCRIBE TABLE commands:

o« The system_schema.keyspaces, system_schema.tables, and sys
tem_schema.columns store the definitions of the keyspaces, tables, and indexes
defined for the cluster.

o The system_traces keyspace contains tables that store information about query
traces, which we'll learn how to view and interpret in Chapter 13.

o The system_auth keyspace contains tables that store information about the users,
roles, and permissions Cassandra uses to provide authentication and authoriza-
tion features we'll learn about in Chapter 14.

Summary

In this chapter, we examined the main pillars of Cassandra’s architecture, including
gossip, snitches, partitioners, replication, consistency, anti-entropy, hinted handoff,
and lightweight transactions. We also looked at some of Cassandra’s internal data
structures, including memtables, SSTables, and commit logs, and how Cassandra exe-
cutes various operations, such as deletion and compaction. Finally, we surveyed some
of the major classes and interfaces, pointing out key points of interest in case you
want to dive deeper into the code base.
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CHAPTER 7
Designing Applications with Cassandra

In the previous chapters you learned how Cassandra represents data, how to create
Cassandra data models, and how Cassandra’s architecture works to distribute data
across a cluster so that you can access it quickly and reliably. Now it’s time to take this
knowledge and start to apply it in the context of real-world application design.

Hotel Application Design

Let’s return to the hotel domain you began working with in Chapter 5. Imagine that
you've been asked to develop an application that leverages the Cassandra data models
you created to represent hotels, their room availability, and reservations.

How will you get from a data model to the application? After all, data models don’t
exist in a vacuum. There must be software applications responsible for writing and
reading data from the tables that you design. While you could take many architec-
tural approaches to developing such an application, we’ll focus in this chapter on the
microservice architectural style.

Cassandra and Microservice Architecture

Over the past several years, the microservice architectural style has been foundational
to the discipline of cloud-native applications. As a database designed for the cloud
from the ground up, Cassandra is a natural fit for cloud-native applications.

We don’t intend to provide a full discussion of the benefits of a microservice architec-
ture here, but will reference a subset of the principles introduced in Sam Newman’s
book Building Microservices(O’Reilly), an excellent source on this topic.
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Encapsulation

Encapsulation could also be phrased as “services that are focused on doing one
thing well” or the “single responsibility principle”

By contrast, in many enterprises the database serves as a central integration
point. An application might expose interfaces to other applications such as
remote procedure call (RPC) or messaging interfaces, but its also common for
one application to access another application’s database directly, which violates
encapsulation and produces dependencies between applications that can be diffi-
cult to isolate and debug (see Figure 7-1).

Application 1 Application 2 ServiceA @, Service B

Database Database Database

=
Figure 7-1. Integration by database contrasted with microservices

Autonomy

In a microservice architecture, autonomy refers to the ability to independently
deploy each microservice without dependence on any other microservices. This
flexibility has significant advantages in allowing you to independently evolve
portions of a deployed application without downtime, gradually introducing new
versions of a service and minimizing the risk of these deployments.

Another implication of autonomy is that each microservice can have its own data
store using the most appropriate technology for that service. We'll examine this
flexibility in more detail in “Polyglot Persistence” on page 146.

Scalability

Microservice architecture provides a lot of flexibility by giving you the ability to
run more or fewer instances of a service dynamically according to demand. This
allows you to scale different aspects of an application independently.

For example, in a hotel domain there is a large disparity between shopping (the
amount of traffic devoted to looking for hotel rooms) and booking (the much
lower level of traffic associated with customers actually committing to a reserva-
tion). For this reason, you might expect to scale the services associated with hotel
and inventory data to a higher degree than the services associated with storing
reservations.
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Microservice Architecture for a Hotel Application

To create a microservice architecture for the hotel application, you’ll need to identify
services, their interfaces, and how they interact. Although it was written well before
microservices became popular, Eric Evans’ book Domain-Driven Design(Addison-
Wesley Professional) has proven to be a useful reference. One of the key principles
Evans articulates is beginning with a domain model and identifying bounded con-
texts. This process has become a widely recommended approach for identifying
microservices.

In Figure 7-2, you can see some of the key architecture and design artifacts that are
often produced when building new applications. Rather than a strict workflow, these
are presented in an approximate order. The influences between these artifacts are
sometimes sequential or waterfall style, but are more often iterative in nature as
designs are refined.

UX Design Data Modeling Architecture
Use Cases Conceptual Bounded
Data Models Contexts

Access Logical Data Services and
Patterns Models interfaces

: Physical Data Database
Wireframes Models Selection

Figure 7-2. Artifacts produced by architectural and design processes

Use cases and access patterns are user experience (UX) design artifacts that also influ-
ence the data modeling and software architecture processes. We discussed the special
role of access patterns in Cassandra data modeling in Chapter 5, so let’s focus here on
the interactions between data modeling and software architecture.

To define a microservice architecture, let’s use a process that complements the data
modeling processes you've already learned. As you begin to identify entities as part of
a conceptual data modeling phase, you can begin to identify bounded contexts that
represent groupings of related entities. As you progress into logical data modeling,
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you’ll refine the bounded contexts in order to identify specific services that will be
responsible for each table (or group of related, denormalized tables). During the final
stage of the design process, you confirm the design of each service, the selection of
database, the physical data models, and actual database schema.

Identifying Bounded Contexts

Let’s see how this high-level process works in practice for your hotel application.
Reusing the conceptual data model from Chapter 5, you might choose to identify a
Hotel Domain encompassing the information about hotels, their rooms, and availa-
bility, and a Reservation Domain to include information about reservations and
guests, as shown in Figure 7-3. These happen to correspond to the keyspaces identi-
fied in your initial data model.

confirmation
number
e

@ Room  —n—holds ——1— Reservation

l ,
m 1 1 n

<>
n n n 1
| | | |

Point of Amenit Room
Interest y Availability

Figure 7-3. Identifying bounded contexts for a hotel application

Hotel Domain Reservation Domain

Hotel

Guest

Identifying Services

The next step is to formalize the bounded contexts you've identified into specific
services that will own specific tables within your logical data model. For example, the
Hotel Domain identified previously might decompose into separate services focused
on hotels, points of interest, and inventory availability, as shown in Figure 7-4.

144 | Chapter7: Designing Applications with Cassandra



Hotel Service Point of Interest
hotels_by_poi Service
poi_name K hotel_id pois_by_hotel
Q1> hotel_id (S} name hotel_id K
name phone .
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phone address S
address
Q4
amenities_by_room available_rooms_
hotel id K by_hotel_date
room_id K Q5 hotel_id K
amenity_name C1 date C1
description room_number (1t
is_available
Inventory Service

Figure 7-4. Identifying services for hotel data

There are multiple possible designs, but a good general design principle is to assign
tables that have a high degree of correspondence to the same service. In particular,
when working with Cassandra, a natural approach is to assign denormalized tables
representing the same basic data type to the same service.

Services should embody classic object-oriented principles of coupling and cohesion:
there should be a high degree of cohesion or relatedness between tables owned by a
service, and a low amount of coupling or dependence between contexts. The query
arrows on your Chebotko diagrams are helpful here in identifying relationships
between services, whether they are direct invocation dependencies, or data flows
orchestrated through user interfaces or events.

Using the same principles as above, examine the tables in your logical data model
within the Reservation Domain. You might identify a Reservation Service and a Guest
Service, as shown in Figure 7-5. In many cases there will be a one-to-one relationship
between bounded contexts and services, although with more complex domains there
could be further decomposition into services.
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Figure 7-5. Identifying services for reservation data

While the initial design did not specifically identify access patterns for guest data out-
side of navigating to guest information from a reservation, it’s not a big stretch to
imagine that your business stakeholders will at some point want to allow guests to
create and manage accounts on your application.

Designing Microservice Persistence

The final stage in the data modeling process consists of creating physical data models.
This corresponds to the architectural tasks of designing services, including database-
related design choices such as selecting a database and creating database schema.

Polyglot Persistence

One of the benefits of microservice architecture is that each service is independently
deployable. This gives you the ability to select a different database for each microser-
vice, an approach known as polyglot persistence.

While you might be surprised to read this in a book on Cassandra, it is nonetheless
true that Cassandra may not be the ideal backing store for every microservice, espe-
cially those that do not require the scalability that Cassandra offers.

Let’s examine the services you've identified in the design of your hotel application to
identify some options for polyglot persistence. We'll summarize these in Table 7-1.
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Table 7-1. Polyglot persistence example

Service Data characteristics Database options
Hotel Service Descriptive text about hotels and their amenities, changes  Document database (i.e., MongoDB),
infrequently (assandra, or Elasticsearch/Solr for full
text search

Point of Interest Geographic locations and descriptions of points of interest ~ Cassandra or other tabular databases
Service supporting geospatial indexes such as
DataStax Enterprise

Inventory Service  Counts of available rooms by date, large volume of reads (assandra or other tabular databases
and writes

Reservation Service  Rooms reserved on behalf of guests, lower volume of reads ~ Cassandra or other tabular databases
and writes than inventory

Guest Service Guest identity and contact information, possible extension  Cassandra, graph databases
point for customer and fraud analytics systems

You might make some of your selections with an eye to future extensibility and scala-
bility of the system.

Representing other database models in CQL

When choosing to use Cassandra as the primary underlying database across multiple
services, it is still possible to achieve some of the characteristics of other data models
such as key-value models, document models, and graph models:

Key-value models
Key-value models can be represented in Cassandra by treating the key as the par-
tition key. The remaining data can be stored in a value column as a text or blob
type. It's recommended not to exceed 5 MB for a single value, so consider break-
ing up large documents into multiple rows.

Document models
There are two primary approaches in which Cassandra can behave like a docu-
ment database, one based on having a well-defined schema, and the other
approximating a flexible schema approach. Both involve identifying primary key
columns according to standard Cassandra data modeling practices discussed in
Chapter 5.

The flexible schema approach involves storing nonprimary key columns in a
blob, as in the following table definition:

CREATE TABLE hotel.hotels_document (
id text PRIMARY KEY,
document text);

With this design, the document column could contain arbitrary descriptive data
in JavaScript Object Notation (JSON) or some other format, which would be left
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to the application to interpret. This could be somewhat error prone and is not a
very elegant solution.

A Dbetter approach is to use CQL support for reading and writing data in JSON
format, introduced in Cassandra 2.2. For example, you could insert data into the
hotels table with this query:

cqlsh:hotel> INSERT INTO hotels JSON '{ "id": "Az123",
"name": "Super Hotel Suites at WestWorld",
"phone": "1-888-999-9999",
"address": {
"street": "10332 E. Bucking Bronco",
"city": "Scottsdale",
"state_or_province": "AZ",
"postal_code": 85255
}
s
Similarly, you can request data in JSON format from a CQL query. The response
will contain a single text field labeled json that includes the requested columns—
in this case, all of them (note that no formatting is provided for the output):

cqlsh:hotel> SELECT JSON * FROM hotels WHERE id = 'AZ123';

{ "id": "AzZ123", "name": "Super Hotel Suites at WestWorld",
"phone": "1-888-999-9999", "address": {

"street": "10332 E. Bucking Bronco", "city": "Scottsdale",
"state_or_province": "AZ", "postal_code": 85255 }

The INSERT JSON and SELECT JSON commands are particularly useful for web
applications or other JavaScript applications that use JSON representations.
While the ability to read and write data in JSON format does make Cassandra
appear to behave more like a document database, remember that all of the refer-
enced attributes must be defined in the table schema.

Graph models

Graph data models are a powerful way of representing domains where the rela-
tionships between entities are as important or more important than the proper-
ties of the entities themselves. Common graph representations include property
graphs. A property graph consists of vertexes that represent the entities in a
domain, while edges represent the relationships between vertices and can be
navigated in either direction. Both vertices and edges can have properties, hence
the name property graph.

Property graphs between related entities can be represented on top of Cassandra
using an approach in which each vertex type and edge type is stored in a dedica-
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ted table. To interact with the graph, applications use a graph query language
such as Gremlin or Cypher. Graph databases provide a processing engine that
interprets these queries and executes them, including data access to an underly-
ing storage layer. DataStax Enterprise is an example of a database that provides a
graph API with Cassandra as the underlying storage layer.

Extending Designs

Anyone who has built and maintained an application of significant size knows that
change is inevitable. Business stakeholders come up with new requirements that
cause you to extend systems.

For example, lets say your business stakeholder approaches you after your initial
hotel data model to identify additional ways that customers should be able to search
for hotels in your application. You might represent these as additional access patterns,
such as searching for hotels by name, location, or amenities, as shown in Figure 7-6.

Find hotels
by geo
location

Find hotel
by name

Find hotels
by amenity

Shop for
rooms at
hotel

View hotel
Info

View hotels

—Q near POI

Show POIs
near hotel

View room
details

Figure 7-6. Additional hotel access patterns
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According to the principles you learned in Chapter 5, your first thought might be to
continue the practice of denormalization, creating new tables that will be able to sup-
port each of these access patterns, as shown in Figure 7-7.

Find hotels
by geo
location

Find hotel
by name

Find hotels
by amenity

hotels_by_name

name K
hotel_id (4

hotels_by_location

latitude K
longitude K

hotels_by_amenity

amenity_name K
hotel_id G

phone hotel_id (1 name
“address* name phone
phone *address®

*address*

Figure 7-7. Additional hotel tables

At this point, you now have five different access patterns for hotel data, and it’s rea-
sonable to begin to ask how many denormalized tables is too many. The correct
answer for your domain is going to depend on several factors, including the volume
of reads and writes, and the amount of data. However let’s assume in this case that
youd like to explore some other options besides just automatically adding new tables
to your design.

Cassandra provides two mechanisms that you can use as alternatives to managing
multiple denormalized tables: secondary indexes and materialized views.

Secondary Indexes

If you try to query on a column in a Cassandra table that is not part of the primary
key, you'll soon realize that this is not allowed. For example, consider the hotels
table, which uses the id as the primary key. Attempting to query by the hotel’s name
results in the following output:

cqlsh:hotel> SELECT * FROM hotels
WHERE name = 'Super Hotel Suites at WestWorld';

InvalidRequest: Error from server: code=2200 [Invalid query] message=
"Cannot execute this query as it might involve data filtering and
thus may have unpredictable performance. If you want to execute this
query despite the performance unpredictability, use ALLOW FILTERING"

As the error message instructs, you could override Cassandra’s default behavior in
order to force it to query based on this column using the ALLOW FILTERING keyword.
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However, the implication of such a query is that Cassandra would need to ask all of
the nodes in the cluster to scan all stored SSTable files for hotels matching the pro-
vided name, because Cassandra has no indexing built on that particular column. This
could yield some undesirable side effects on larger or more heavily loaded clusters,
including query timeouts and additional processing load on your Cassandra nodes.

One way to address this situation without adding an additional table using the hotel’s
name as a primary key is to create a secondary index for the name column. A secon-
dary index is an index on a column that is not part of the primary key:

cqlsh:hotel> CREATE INDEX ON hotels ( name );

You can also give an optional name to the index with the syntax CREATE INDEX
<name> ON... If you don't specify a name, cqlsh creates a name automatically accord-
ing to the form <table name>_<column name>_idx. For example, you can learn the
name of the index you just created using DESCRIBE KEYSPACE:

cqlsh:hotel> DESCRIBE KEYSPACE;

CREATE INDEX hotels_name_idx ON hotel.hotels (name);
Now that you've created the index, your query will work as expected:

cqlsh:hotel> SELECT id, name FROM hotels
WHERE name = 'Super Hotel Suites at WestWorld';

AZ123 | Super Hotel Suites at WestWorld

(1 rows)

You're not limited just to indexes based only on simple type columns. It’s also possible
to create indexes that are based on user-defined types or values stored in collections.
For example, you might wish to be able to search based on the address column
(based on the address UDT) or the pois column (a set of unique identifiers for
points of interest):

cqlsh:hotel> CREATE INDEX ON hotels ( address );

cqlsh:hotel> CREATE INDEX ON hotels ( pois );
Note that for maps in particular, you have the option of indexing either the keys (via
the syntax KEYS(addresses)), the values (which is the default), or both (in Cassandra
2.2 or later).

Now let’s look at the resulting updates to the design of hotel tables, taking into
account the creation of indexes on the hotels table as well as the service and updated
keyspace assignments for each table, as shown in Figure 7-8. Note here the assign-
ment of a keyspace per service, which we'll discuss more in depth in “Services, Key-
spaces, and Clusters” on page 159.
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Figure 7-8. Revised hotel physical model

If you change your mind at a later time about these indexes, you can remove them
using the DROP INDEX command:
cqlsh:hotels> DROP INDEX hotels_name_idx;

cqlsh:hotels> DROP INDEX hotels_address_idx;
cqlsh:hotels> DROP INDEX hotels_pois_1idx;
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Secondary Index Pitfalls

Because Cassandra partitions data across multiple nodes, each
node must maintain its own copy of a secondary index based on

" the data stored in partitions it owns. For this reason, queries
involving a secondary index typically involve more nodes, making
them significantly more expensive.

Secondary indexes are not recommended for several specific cases:

« Columns with high cardinality. For example, indexing on the
hotel.address column could be very expensive, as the vast
majority of addresses are unique.

« Columns with very low data cardinality. For example, it would
make little sense to index on the user.title column (from
the user table in Chapter 4) in order to support a query for
every “Mrs”” in the user table, as this would result in a massive
row in the index.

 Columns that are frequently updated or deleted. Indexes built
on these columns can generate errors if the amount of deleted
data (tombstones) builds up more quickly than the compac-
tion process can handle.

For optimal read performance, denormalized table designs or materialized views
(which we'll discuss in the next section) are generally preferred to using secondary
indexes. However, secondary indexes can be a useful way of supporting queries that
were not considered in the initial data model design.

SASI: A New Secondary Index Implementation

The Cassandra 3.4 release introduced an experimental, alternative implementation of
secondary indexes known as the SSTable Attached Secondary Index (SASI). SASI was
developed by Apple and released as an open source implementation of Cassandra’s
secondary index API. As the name implies, SASI indexes are calculated and stored as
part of each SSTable file, differing from the original Cassandra implementation,
which stores indexes in separate, “hidden” tables.

The SASI implementation exists alongside traditional secondary indexes, and you can
create a SASI index with the CQL CREATE CUSTOM INDEX command:

cqlsh:my_keyspace> CREATE CUSTOM INDEX hotel_name_sasi_idx
ON hotels (name)
USING 'org.apache.cassandra.index.sasi.SASIIndex'
WITH OPTIONS= {'mode': 'CONTAINS'};
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SASI indexes do offer functionality beyond the traditional secondary index imple-
mentation, such as the ability to do inequality (greater than or less than) searches on
indexed columns. You can also use the CQL LIKE keyword to do text searches against
indexed columns. For example, you could use the following query to find hotels
whose name contains the substring “world” (case insensitive):

cqlsh:hotel> SELECT id, name FROM hotels
WHERE name LIKE '%world%';

AZ123 | Super Hotel Suites at WestWorld

(1 rows)

While SASI indexes do perform better than traditional indexes by eliminating the
need to read from additional tables, they still require reads from a greater number of
nodes than a denormalized design.

Materialized Views

Materialized views were introduced to help address some of the shortcomings of sec-
ondary indexes discussed above. Creating indexes on columns with high cardinality
tends to result in poor performance, because most or all of the nodes in the ring are
queried.

Materialized views address this problem by storing preconfigured views that support
queries. Each materialized view supports queries based on a single column which is
not part of the original primary key. Materialized views simplify application develop-
ment: instead of the application having to keep multiple denormalized tables in sync,
Cassandra takes on the responsibility of updating views in order to keep them consis-
tent with the base table.

Materialized views incur a performance impact on writes to the base table because
some reads are required to maintain this consistency. However, materialized views
demonstrate more efficient performance compared to managing denormalized tables
in application clients. Internally, materialized view updates are implemented using
batching, which we will discuss in Chapter 9.

As you work with physical data model designs, you'll want to consider whether to
manage the denormalization manually or use Cassandra’s materialized view capabil-
ity.

The design shown for the reservation keyspace in Figure 5-9 uses both approaches.
The reservations_by_hotel_date and reservations_by_guest are represented as
regular tables, and reservations_by_confirmation as a materialized view on the res
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ervations_by_hotel_date table. Lets discuss the reasoning behind this design
choice momentarily.

Similar to secondary indexes, materialized views are created on existing tables. To
understand the syntax and constraints associated with materialized views, let’s take a
look at a CQL command that creates the reservations_by_confirmation table from
the reservation physical model as a materialized view:

cqlsh> CREATE MATERIALIZED VIEW reservation.reservations_by_confirmation
AS SELECT *
FROM reservation.reservations_by_hotel_date
WHERE confirm_number IS NOT NULL and hotel_id IS NOT NULL and
start_date IS NOT NULL and room_number IS NOT NULL
PRIMARY KEY (confirm_number, hotel_id, start_date, room_number);

The order of the clauses in the CREATE MATERIALIZED VIEW command can appear

somewhat inverted, so let’s walk through these clauses in an order that is a bit easier
to process.

The first parameter after the command is the name of the materialized view—in this
case, reservations_by_confirmation. The FROM clause identifies the base table for
the materialized view, reservations_by hotel_date.

The PRIMARY KEY clause identifies the primary key for the materialized view, which
must include all of the columns in the primary key of the base table. This restriction
keeps Cassandra from collapsing multiple rows in the base table into a single row in
the materialized view, which would greatly increase the complexity of managing
updates.

The grouping of the primary key columns uses the same syntax as an ordinary table.
The most common usage is to place the additional column first as the partition key,
followed by the base table primary key columns, used as clustering columns for pur-
poses of the materialized view.

The WHERE clause provides support for filtering. Note that a filter must be specified for
every primary key column of the materialized view, even if it is as simple as designat-
ing that the value IS NOT NULL.

The AS SELECT clause identifies the columns from the base table that you want your
materialized view to contain. You can reference individual columns, but in this case
the wildcard * indicates that all columns will be part of the view.
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Enhanced Materialized View Capabilities

The initial implementation of materialized views in the 3.0 release
has some limitations on the selection of primary key columns and
filters. There are several Jira issues in progress to add capabilities,
such as multiple nonprimary key columns in materialized view pri-
mary keys, CASSANDRA-9928, or using aggregates in materialized
views, CASSANDRA-9778. If you're interested in these features,
track the Jira issues to see when they will be included in a release.

Now that you have a better understanding of the design and use of materialized
views, let’s revisit the reservation physical design. Specifically, reservations_by_con
firmation is a good candidate for implementation as a materialized view due to the
high cardinality of the confirmation numbers—after all, you can’t get any higher car-
dinality than a unique value per reservation.

Here is the schema for this materialized view:

CREATE MATERIALIZED VIEW reservation.reservations_by_confirmation AS
SELECT * FROM reservation.reservations_by_hotel_date

WHERE confirm_number IS NOT NULL and hotel_id IS NOT NULL and
start_date IS NOT NULL and room_number IS NOT NULL

PRIMARY KEY (confirm_number, hotel_id, start_date, room_number);

An alternate design would be to use reservations_by_confirmation as the base
table and reservations_by_hotel_date as a materialized view. However, because
you cannot create a materialized view with multiple nonprimary key columns from
the base table, this would have required you to designate either hotel_id or date asa
clustering column in reservations_by_confirmation. Both designs might be
acceptable based on the anticipated amount of data, but this should give some insight
into the trade-offs you'll want to consider in selecting which of several denormalized
table designs to use as the base table.

An updated physical data model reflecting the design of tables used by the Reserva-
tion Service and Guest Service is shown in Figure 7-9. In this view, the contents of the
reservations_by_confirmation table are shown in italics to indicate it is a material-
ized view based on reservations_by_hotel_date.
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Figure 7-9. Revised Reservation physical model

Experimental Features

Materialized views were a major selling point of the Cassandra 3.0 release and drove a
number of significant design changes under the hood, such as the new storage engine
we'll discuss in Chapter 9. However, there were several rough edges and some corner
cases that were not well handled in the initial implementation.

While there have been significant improvement on these issues in releases in the 3.X
series, the Cassandra community has clarified the process for introducing new fea-
tures entailing significant architectural change. These new features will now be desig-
nated as experimental features and disabled by default. Enabling an experimental
feature will require a change in the cassandra.yaml file.

Other experimental features include the SASI indexes discussed above as well as tran-
sient replicas, a feature introduced in Cassandra 4.0 as a cost-saving measure for
extremely large clusters. You’ll learn more about transient replicas in Chapter 9.
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Reservation Service: A Sample Microservice

So far, you've learned how a microservice architecture is a natural fit for using Cas-
sandra, identified candidate services for a hotel application, and considered how ser-
vice design might influence your Cassandra data models. The final subject to examine
is the design of individual microservices.

Design Choices for a Java Microservice

Let’s narrow the focus to the design of a single service: the Reservation Service. As
discussed above, the Reservation Service will be responsible for reading and writing
data using the tables in the reservation keyspace.

A candidate design for a Java implementation of the Reservation Service using popu-
lar libraries and frameworks is shown in Figure 7-10. This implementation uses
Apache Cassandra for its data storage via the DataStax Java Driver and the Spring
Boot project for managing the service life cycle. It exposes a RESTful API docu-
mented via Swagger.

Reservation Service

Service Application (JVM)

[ REST endpoint ] [ Business Logic ] [DataA(cessObjeds}

[Tom(arWebserver] [ Spring Boot J [ Java Driver J - -

- -~ W

Disk

Figure 7-10. Reservation Service Java design

The Reservation Service Java implementation can be found on GitHub at https://
github.com/jeffreyscarpenter/reservation-service. The goal of this project is to provide
a minimally functional implementation of a Java microservice using the DataStax Java
Driver that can be used as a reference or starting point for other applications. We'll be
referencing this source code in Chapter 8 as we examine the functionality provided
by the various DataStax drivers.
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Deployment and Integration Considerations

As you proceed into implementation, there are a couple of factors you'll want to con-
sider related to how the service will be deployed and integrated with other services
and supporting infrastructure.

Services, Keyspaces, and Clusters

First, you'll want to consider the relationship of services to keyspaces. A good rule of
thumb is to use a keyspace per service to promote encapsulation. You'll learn about
Cassandra’s access control features in Chapter 14 that allow you to create a database
user per keyspace, such that each service can be easily configured to have exclusive
read and write access to all of the tables in its associated keyspace.

Next, youw'll want to consider whether a given service will have its own dedicated Cas-
sandra cluster or share a cluster with other services. Figure 7-11 depicts a shared
deployment in which Reservation and Inventory Services are using a shared cluster
for data storage.

Reservation
-
o b

Inventory )

Service

Figure 7-11. Service mapping to clusters

Companies that use both microservice architectures and Cassandra at large scale,
such as Netflix, are known to use dedicated clusters per service. The decision of how
many clusters to use will depend on the workload of each service. A flexible approach
is to use a mix of shared and dedicated clusters, in which services that have lower
demand share a cluster, while services with higher demand are deployed with their
own dedicated cluster. Sharing a cluster across multiple services makes sense when
the usage patterns of the services do not conflict.

Data Centers and Load Balancing

A second consideration is the selection of data centers where each service will be
deployed. The corresponding cluster for a service should also have nodes in each data
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center where the service will be deployed, to enable the fastest possible access.
Figure 7-12 shows a sample deployment across two data centers. The service instan-
ces should be made aware of the name of the local data center. The keyspace used by a
service will need to be configured with a number of replicas to be stored per data cen-
ter, assuming the NetworkTopologyStrategy is the replication strategy in use.

Data Center 1 Data Center 2

Zone A Zone B Zone A Zone B

Reservation Reservation Reservation Reservation

Service Service Service Service

(assandra (assandra (assandra (assandra
Node Node Node Node

( [ 53§ J J

Figure 7-12. Multiple data center deployment

As you will learn in Chapter 8, most of these options, such as keyspace names, data-
base access credentials, and cluster topology, can be externalized from application
code into configuration files that can be more readily changed. Even so, it’s wise to
begin thinking about these choices in the design phase.

Interactions Between Microservices

One question that arises when developing microservices that manage related types is
how to maintain data consistency between the different types. If you want to main-
tain strict ownership of data by different microservices, how can you maintain a con-
sistency relationship for data types owned by different services? Cassandra does not
provide a mechanism to enforce transactions across table or keyspace boundaries.
But this problem is not unique to Cassandra, since youd have a similar design chal-
lenge whenever you need consistency between data types managed by different serv-
ices, regardless of the backing store.

Let’s look at the hotel application for an example. Given the separate services to man-
age inventory and reservation data, how do you ensure that the inventory records are
correctly updated when a customer makes a reservation? Two common approaches to
this challenge are shown in Figure 7-13.
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Figure 7-13. Service integration patterns

The approach on the left side is to create a Booking Service to help coordinate the
changes to reservation and inventory data. This is an instance of a technique known
as orchestration, often seen in architectures that distinguish between so-called CRUD
services (responsible for creating, reading, updating, and deleting a specific data type)
and services that implement business processes. In this example, the Reservation and
Inventory Services are more CRUD services, while the Booking Service implements
the business process of booking a reservation, reserving inventory and possibly other
activities such as notifying the customer and hotel.

An alternative approach is depicted on the right side of the figure, in which a message
queue or streaming platform such as Apache Kafka is used to create a stream of data
change events which can be consumed asynchronously by other services and applica-
tions. For example, the Inventory Service might choose to subscribe to events related
to reservations published by the Reservation Service in order to make corresponding
adjustments to inventory. Because there is no central entity orchestrating these
changes, this approach is instead known as choreography. We'll examine integrating
Cassandra with Kafka and other complementary technologies in more detail in Chap-
ter 15.

It's important to note that both orchestration and choreography can exhibit the trade-
offs between consistency, availability, and partition tolerance discussed in Chapter 2,
and will require careful planning to address error cases such as service and infra-
structure failures. While a detailed treatment of these approaches, including error
handling scenarios, is beyond scope here, techniques and technologies are available to
address error cases such as service failure and data inconsistency. These include:

Deployment and Integration Considerations | 161



« Using a distributed transaction framework to coordinate changes across multiple
services and databases. This can be a good approach when strong consistency is
required. Scalar DB is an interesting library for implementing distributed ACID
transactions that is built using Cassandra’s lightweight transactions as a locking
primitive.

o Using a distributed analytics tool such as Apache Spark to check data for consis-
tency as a background processing task. This approach is useful as a backstop for
catching data inconsistencies caused by software errors, in situations in which
there is tolerance for temporary data inconsistencies.

o A variant of the event-based choreography approach is to leverage the change
data capture (CDC) feature of a database as the source of events, rather than rely-
ing on a service to reliably persist data to a database and then post an event. This
approach is typically used to guarantee highly consistent interactions at the inter-
face between applications, although it could be used between individual services.

KillrVideo: A Reference Application for Video Sharing

The DataStax Developer Relations team and other contributors have created a video
sharing application called KillrVideo. KillrVideo is an open source reference applica-
tion built using features of Apache Cassandra and DataStax Enterprise, including
Search and Graph. It uses a microservice architecture, providing another example of
the design principles discussed here. You can download the source on GitHub and
run your own copy of the application.

Summary

In this chapter, we've looked at why Cassandra is a natural fit within a microservice
style architecture, and discussed how to ensure your architecture and data modeling
processes can work together. We examined techniques for putting Cassandra-based
services in context of other data models. Now that we have examined the design of a
particular microservice architecture, were ready to dive into the details of imple-
menting applications using Cassandra.
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CHAPTER 8
Application Development with Drivers

Now that we've looked at how to design a microservice architecture for a hotel appli-
cation, let’s look at how you might implement one of the services within that applica-
tion—the Reservation Service. To write an application using Cassandra, youre going
to need a driver, and thankfully you are in good hands.

You're likely used to connecting to relational databases using drivers. For example, in
Java, JDBC is an API that abstracts the vendor implementation of the relational data-
base to present a consistent way of storing and retrieving data using Statements, Pre
paredStatements, ResultSets, and so forth. To interact with the database, you get a
driver that works with the particular database youre using, such as Oracle, SQL
Server, or MySQL; the implementation details of this interaction are hidden from the
developer.

There are a number of client drivers available for Cassandra as well, including sup-
port for most popular languages. There are benefits to these clients, in that you can
easily embed them in your own applications, and that they frequently offer more fea-
tures than the CQL native interface does, including connection pooling and JMX
integration and monitoring. In the following sections, you'll learn about the various
clients available and the features they offer.

Hector, Astyanax, and Other Legacy Clients

In the early days of Cassandra, the community produced a number of client drivers
for different languages. These contributions were a key enabler of Cassandra adop-
tion. We'll mention a few of these clients here to pay tribute:

o Hector was one of the first Cassandra clients. Hector provided a simple Java
interface that helped many early developers avoid the challenges of writing to the
Thrift AP, and served as the inspiration for several other drivers.
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o Astyanax was a Java client originally built by Netflix on top of the Thrift API as a
logical successor to the Hector driver. This driver helped many users transition
from Thrift to CQL. The project was retired in 2016.

« Other clients included Pycassa for Python, Perlcassa for Perl, Helenus for
Node.js, and Cassandra-Sharp for the Microsoft .NET framework and C#. Most
of these clients are no longer actively maintained, as they were based on the now-
removed Thrift interface.

You can find a comprehensive list of both current and legacy drivers at http://cassan
dra.apache.org/doc/latest/getting_started/drivers.html.

DataStax Java Driver

The introduction of CQL was the impetus for a major shift in the landscape of Cas-
sandra client drivers. The simplicity and familiar syntax of CQL made the develop-
ment of client programs similar to traditional relational database drivers. DataStax
made a strategic investment of open source drivers for Java and several additional
languages in order to fuel Cassandra adoption. These drivers quickly became the de
facto standard for new development projects. You can access the drivers as well as
additional connectors and tools at https://github.com/datastax.

DataStax Driver Compatibility Matrix

Visit the driver matrix page to access documentation and identify
driver versions that are compatible with your server version.

The DataStax Java Driver is the oldest and most popular of these drivers, and typi-
cally the driver in which new features appear first. For this reason, we’ll focus on
using the Java driver and use this as an opportunity to learn about the features that
are provided by the DataStax drivers across multiple languages.

Development Environment Configuration

First, you'll need to access the driver in your development environment. You could
download the driver directly from the URL listed before and manage the dependen-
cies manually, but it is more typical in modern Java development to use a tool like
Maven or Gradle to manage dependencies. If youre using Maven, you’ll need to add
something like the following to your project pom.xml file, while specifying a value for
the driver version:

<dependency>
<groupld>com.datastax.oss</groupIld>
<artifactId>java-driver-core</artifactId>
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<version>${driver.version}</version>
</dependency>
You can find the documentation manuals for the Java drivers at https://docs.data
stax.com/en/developer/java-driver/latest, and Javadoc for the Java driver at https://
docs.datastax.com/en/drivers/java/latest/. Alternatively, the Javadocs are also part of
the source distribution.

All of the DataStax drivers are managed as open source projects on GitHub. If you're
interested in seeing the Java driver source, you can get a read-only trunk version
using this command:

$ git clone https://github.com/datastax/java-driver.git

If you're interested in learning more about the internals of the driver, or even poten-
tially contributing to the project, there’s also a developer guide on the DataStax docu-
mentation site.

Driver API Changes

The 4.0 release of the Java driver included significant breaking
changes to the API and configuration of the driver in order to sim-
plify application development and discourage configurations con-
trary to best practices. This book conforms to the newer APIs. The
“Clients” chapter in the second edition of this book remains a good
resource for those using the Java Driver 3.x and earlier.

In September 2019, DataStax announced a significant change to its
driver strategy. Prior to that point, DataStax had maintained sepa-
rate open source and enterprise drivers for use with Apache Cas-
sandra and DataStax Enterprise, respectively. In early 2020, the
codebases for the drivers in each of the supported languages were
merged, bringing the benefits of several performance and availabil-
ity improvements which were previously only available to DSE cus-
tomers. DSE-specific driver features are out of the scope of this
book but are well documented on the sites referenced above.

Connecting to a Cluster

Once you've configured your environment, it’s time to start coding. We'll base the
code samples for this chapter around the Reservation Service, a microservice imple-
mentation based on the hotel data model introduced in Chapter 5, and the corre-
sponding application design discussed in Chapter 7. The source code for the
Reservation Service is available at https://github.com/jeffreyscarpenter/reservation-
service.
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To start building your application, you’ll use the driver’s API to connect to a cluster.
In the Java driver, connectivity to a cluster is represented by the com.data
stax.oss.driver.api.core.CqlSession class.

The CqlSession class is the main entry point of the driver. It supports a fluent-style
API using the builder pattern. For example, the following line creates a CqlSession
that will attempt to connect to a Cassandra node on the local host at the default Cas-
sandra native protocol port number:

CqlSession cqlSession = CqlSession.builder()
.addContactPoint(new InetSocketAddress("127.0.0.1", 9042))
.build()

Elimination of the Cluster Object

Previous versions of DataStax drivers supported the concept of a
Cluster object used to create Session objects. Recent driver ver-
sions (for example, the 4.0 Java driver and later) have combined
Cluster and Session into CqlSession.

In the terminology of the driver, the nodes you explicitly identify when creating a
CqlSession are known as contact points. Contact points are similar to the concept of
seed nodes that a Cassandra node uses to connect to other nodes in the same cluster.

The minimum required information to create a CqlSession is a single contact point.
The driver defaults to a single contact point consisting of the local host and default
port, so this statement is equivalent to the previous one (unless you are using file-
based configuration, as we describe below):

CqlSession cqlSession = CqlSession.builder().build()

While this configuration is useful for development, when you might be running a
Cassandra node on your local machine, for production environments you’ll want to
specify multiple contact points. This is a good practice in case one of the nodes you
pick happens to be down when the client application is attempting to create a CqlSes
sion. You'll also need to specify the name of the local data center. We'll discuss nam-
ing data centers in Chapter 10.
CqlSession cqlSession = CqlSession.builder()
.addContactPoint(new InetSocketAddress('"<some IP address>", 9042))
.addContactPoint(new InetSocketAddress("<another IP address>", 9042))

.withLocalDatacenter("<data center name>")
.build()

When you create a CqlSession, the driver connects to one of the configured contact
points to obtain metadata about the cluster. This action will throw a NoHostAvaila

bleException if none of the contact points is available, or an AuthenticationExcep
tion if authentication fails. We'll discuss authentication in more detail in Chapter 14.
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You can optionally provide the name of a keyspace to connect to, as in this example
that connects to the reservation keyspace:

CqlSession cqlSession = CqlSession.builder()
.addContactPoint(new InetSocketAddress('"<some IP address>", 9042))
.addContactPoint(new InetSocketAddress("<another IP address>", 9042))
.withKeyspace("reservation")
.build()

If you do not specify a keyspace name when creating the CqlSession, you’ll have to
qualify every table reference in your queries with the appropriate keyspace name.

Each CqlSession manages connections to a Cassandra cluster, which are used to exe-
cute queries and control operations using the Cassandra native protocol. The CqlSes
sion contains a pool of TCP connections for each host.

Sessions Are Expensive

Because a CqlSession maintains TCP connections to multiple

\ nodes, it is a relatively heavyweight object. In most cases, you'll

" want to create a single CqlSession and reuse it throughout your

application, rather than continually building up and tearing down

CqlSessions. Another acceptable option is to create a CqlSession
per keyspace, if your application is accessing multiple keyspaces.

Statements

Once you have created a CqlSession to connect to a cluster, you're ready to perform
reads or writes. To begin doing some real application work, you’ll create and execute
CQL statements using implementations of Statement. Statement is an interface with
several implementations, including SimpleStatement, BoundStatement, and Batch
Statement.

The simplest way to create and execute a statement is to call the CqlSession.exe
cute() operation with a string representing the statement. Here’s an example of a
statement that will return the entire contents of the reservations table:

cqlSession.execute("SELECT * from reservation.reservations_by_confirmation");

This statement creates and executes a query in a single method call. In practice, this
could turn out to be a very expensive query to execute in a large database, but it does
serve as a useful example of a very simple query. Most queries will be more complex,
as you'll have search criteria to specify, or specific values to insert. You can certainly
use Javas various string utilities to build up the syntax of your query by hand, but
this, of course, is error prone. It may even expose your application to injection attacks
if you're not careful to sanitize strings that come from end users.
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Simple Statements

Thankfully, you needn’t make things so hard on yourself. The Java driver provides the
SimpleStatement class to help construct parameterized statements. As it turns out,
the execute() operation is a convenience method for creating a SimpleStatement.
The code above is equivalent to the following, using the SimpleStatement.newIn
stance() method:

cqlSession.execute(SimpleStatement.newInstance(
"SELECT * from reservation.reservations_by_confirmation"));

The newInstance() is most useful in cases where you already have a set query string.
Let’s try building a query with variable parameters using a SimpleStatementBuilder.
Here’s an example of a statement that will insert a row in the reservations table,
which you can then execute:

SimpleStatement reservationInsert = SimpleStatement.builder(
"INSERT INTO reservations_by_confirmation (confirmation_number, hotel_id,
start_date, end_date, room_number, guest_id) VALUES (?, ?, 2, 2, 2, 2)")
.addPositionalvalue("RS2GOZ")
.addPositionalvalue("NY456")
.addPositionalvalue("2020-06-08")
.addPositionalvalue("2020-06-10")
.addPositionalvalue(111)
.addPositionalvValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
.build();
cqlSession.execute(reservationInsert);

The first parameter to the call is the basic syntax of your query, indicating the table
and columns you are interested in. The question marks are used to indicate values
that you'll be providing in additional parameters. You use simple strings to hold the
values of the hotel ID, name, and phone number.

If you've created your statement correctly, the insert will execute successfully (and
silently). Now let’s create another statement to read back the row you just inserted:

SimpleStatement reservationSelect = SimpleStatement.builder(
"SELECT * FROM reservations_by_confirmation WHERE confirmation_number=2")
.addPositionalvalue("RS2GOZ")
.build();

ResultSet reservationSelectResult = cqlSession.execute(reservationSelect);

Again, you make use of parameterization to provide the ID for the search. This time,
when you execute the query, make sure to receive the ResultSet which is returned
from the execute() method. You can iterate through the rows returned by the
ResultSet as follows:
for (Row row : reservationSelectResult) {
System.out.format("confirmation_number: %s, hotel_id: %, start_date: %s,

end_date %s, room_number: %i, guest_id: %s\n",
row.getString("confirmation_number"), row.getString("hotel_id"),
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row.getlLocalDate("start_date"), row.getLocalDate("end_date"),
row.getInt("room_number"), row.getUuid("guest_id"));
}
This code uses the ResultSet.iterator() option to get an Iterator over the rows
in the result set and loop over each row, printing out the desired column values. Note
that you use special accessors to obtain the value of each column, depending on the
desired type—in this case, Row.getString(), getInt(), and getUuid(). As you
might expect, this will print out a result such as:

confirmation_number: RS2GOZ, hotel_id: NY456, start_date: 2020-06-08,
end_date: 2020-06-10, room_number: 111, guest_id:
1b4d86f4-ccff-4256-a63d-45c905df2677
Of course, you typically will set columns to values you receive as variables, rather
than the hardcoded value used here. You can find code samples for working with Sim
pleStatements on the simple-statement-solution branch of the Reservation Ser-
vice repository.

Prepared Statements

While SimpleStatements are quite useful for creating ad hoc queries, most applica-
tions tend to perform the same set of queries repeatedly. The PreparedStatement is
designed to handle these queries more efficiently. The structure of the statement is
sent to nodes a single time for preparation, and a handle for the statement is
returned. To use the prepared statement, only the handle and the parameters need to
be sent.

As you're building your application, you'll typically create PreparedStatements for
reading data, corresponding to each access pattern you derive in your data model,
plus others for writing data to your tables to support those access patterns.

Let’s create some PreparedStatements to represent the same reservation queries as
before, using the CqlSession.prepare() operation:
PreparedStatement reservationInsertPrepared = cqlSession.prepare(

"INSERT INTO reservations_by confirmation (confirmation_number, hotel_id,
start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, 2, 2, 2)");

PreparedStatement reservationSelectPrepared = cqlSession.prepare(
"SELECT * FROM reservations_by_confirmation WHERE confirmation_number=2");
Note that the PreparedStatement uses the same parameterized syntax used earlier for
the SimpleStatement. A key difference, however, is that a PreparedStatement is not
a subtype of Statement. This prevents the error of trying to pass an unbound Prepar
edStatement to the CqlSession to execute. Note that there is also a variant of CqlSes
sion.prepare() that accepts a parameterized SimpleStatement as input.
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Let’s take a step back and discuss what is happening behind the scenes of the CqlSes
sion.prepare() operation:

o The driver passes the contents of your PreparedStatement to a Cassandra node
and gets back a unique identifier for the statement. This unique identifier is refer-
enced when you create a BoundStatement. If you're curious, you can actually see
this reference by calling PreparedStatement.getId().

o Once the driver prepares the statement on one node, it proceeds to prepare the
statement on the other nodes in the cluster. Nodes keep track of prepared state-
ments internally. In earlier releases, prepared statements were stored in a cache,
but beginning with the 3.10 release, each Cassandra node stores prepared state-
ments in a local table so that they are present if the node goes down and comes
back up.

o The driver also provides the advanced.prepared-statements.reprepare-on-up
configuration options; this is primarily useful if your cluster is using a release
prior to Cassandra 3.10. If re-preparation is enabled (the default), the driver will
re-prepare statements on nodes that have come back up.

« If the driver tries to execute a PreparedStatement on a node where it has not
been prepared, the driver automatically prepares the statement, at the cost of an
additional round trip between the driver and the node.

You can think of a PreparedStatement as a template for creating queries. In addition
to specifying the form of your query, there are other attributes that you can set on a
PreparedStatement that will be used as defaults for statements it is used to create,
including a default consistency level, retry policy, and tracing.

In addition to improving efficiency, PreparedStatements also improve security by
separating the query logic of CQL from the data. This provides protection against
injection attacks, which attempt to embed commands into data fields in order to gain
unauthorized access.

Bound statement

Now your PreparedStatement is available to use to create queries. In order to make
use of a PreparedStatement, you bind it with actual values by calling the bind()
operation. For example, you can bind the SELECT statement created earlier as follows:
BoundStatement reservationSelectBound = reservationSelectPre-
pared.bind("RS2GOZ");
The bind() operation used here allows you to provide values that match each vari-
able in the PreparedStatement. It is possible to provide the first n bound values, in
which case the remaining values must be bound separately before executing the state-
ment. There is also a version of bind() which takes no parameters, in which case all
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of the parameters must be bound separately. There are several set() operations pro-
vided by BoundStatement that can be used to bind values of different types. For
example, you can take the INSERT prepared statement from above and bind the name
and phone values using the setString() operation:

BoundStatement reservationInsertBound = reservationInsertPrepared.bind()
.setString("confirmation_number", "RS2GOZ")
.setString("hotel_id", "NY456")
.setLocalDate("start_date", "2020-06-08")
.setlLocalDate("end_date", "2020-06-10")
.setShort(111)
.setUuid("1b4d86f4-ccff-4256-a63d-45c905df2677")

Once you have bound all of the values, execute a BoundStatement using CqlSes
sion.execute(). If you have failed to bind any of the values, they will be ignored on
the server side, if protocol v4 (Cassandra 3.0 or later) is in use. The driver behavior
for older protocol versions is to throw an IllegalStateException if there are any
unbound values.

You can find code samples for working with PreparedStatement and BoundState
ment on the prepared-statement-solution branch of the Reservation Service repos-
itory.

Query Builder

The driver also provides a QueryBuilder, which uses a fluent-style API for creating
queries programmatically. This is especially useful for cases where there is variation
in the query structure (such as optional parameters) that would make using Prepared
Statements difficult. Similar to PreparedStatement, it also provides some protection
against injection attacks.

To use the QueryBuilder, you'll need to include an additional dependency, for exam-
ple, in a Maven POM file:

<dependency>
<groupId>com.datastax.oss</groupId>
<artifactId>java-driver-query-builder</artifactId>
<version>${driver.version}</version>

</dependency>

The QueryBuilder provides a set of static methods to facilitate building different
types of statements represented by different classes. The common usage is to import
the static methods of the QueryBuilder class:

import static com.datastax.oss.driver.api.querybuilder.QueryBuilder.*;

Importing methods statically improves code readability, as you'll see as you look at
some examples.
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The QueryBuilder produces objects that implement the com.data
stax.oss.driver.api.querybuilder.BuildableQuery interface and its sub-
interfaces, such as Select, Insert, Update, Delete, and others. The methods on these
interfaces return objects that represent the content of a query as it is being built up.
You'll likely find your IDE quite useful in helping to identify the allowed operations
as you're building queries.

Let’s reproduce the queries from before using the QueryBuilder to see how it works.
First, build a CQL INSERT query:

Insert reservationInsert =
insertInto("reservation", "reservations_by_confirmation")
.value("confirmation_number", "RS2GOZ")
.value("hotel_id", "NY456")
.value("start_date", "2020-06-08")
.value("end_date", "2020-06-10")
.value("room_number", 111)
.value("quest_id", "1b4d86f4-ccff-4256-a63d-45c905df2677");

SimpleStatement reservationInsertStatement = reservationInsert.build();

The first operation calls the QueryBuilder.insertInto() operation to create an
Insert statement for the reservations_by_confirmation table. Then use the
Insert.value() operation repeatedly to specify values for each column you are
inserting. The Insert.build() operation returns a SimpleStatement you can then
pass to CqlSession.execute().

The construction of the CQL SELECT command is similar:

Select reservationSelect =
selectFrom("reservation", "reservations_by_confirmation")
.all()
.whereColumn("confirmation_number").isEqualTo("RS2GOZ");

SimpleStatement reseravationSelectStatement = reservationSelect.build();

For this query, call QueryBuilder.selectFrom() to create a Select statement. You
use the Select.all() operation to select all columns, although you could also have
used the column() operation to select specific columns. Add a CQL WHERE clause via
the Select.whereColumn() operation, to which you pass the name of the column and
then add an equality check for the confirmation number, using the isEqualTo()
operation.

This sample demonstrates how you can use the QueryBuilder to create a Prepared
Statement instead of a SimpleStatement, using the concept of a bind marker as a
placeholder for a value to be specified when the PreparedStatement is bound:

Select reservationSelect =
selectFrom("reservation", "reservations_by_confirmation")
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.all()
.whereColumn("confirmation_number").isEqualTo(bindMarker());

PreparedStatement reservationSelectPrepared =
cqlSession.prepare(reservationSelect.build());

// later
SimpleStatement reservationSelectStatement =
reservationSelectPrepared.bind("RS2G0Z");

For a complete code sample using the QueryBuilder, see the query-builder-
solution branch of the Reservation Service repository.

Object Mapper

You've learned several techniques for creating and executing query statements with
the driver. There is one final technique to look at that provides a bit more abstraction.
The Java driver provides an object mapper that allows you to focus on developing and
interacting with domain models (or data types used on APIs). The object mapper
works off of annotations in source code that are used to map Java classes to tables or
user-defined types (UDTs). The object mapper is a useful tool for abstracting some of
the details of interacting with Cassandra, especially if you have an existing domain
model.

The mapper is provided in two separate libraries for use at compile time and runtime,
so you will need to include additional Maven dependencies in order to use mapper in
your project. You'll add the following dependency to the compile path of your appli-
cation:

<dependency>
<groupld>com.datastax.oss</groupIld>
<artifactId>java-driver-mapper-processor</artifactId>
<version>${driver.version}</version>

</dependency>

You'll also add the runtime library as a runtime dependency:

<dependency>
<groupld>com.datastax.oss</groupIld>
<artifactId>java-driver-mapper-runtime</artifactId>
<version>${driver.version}</version>
</dependency>
The mapper API is based on standard design patterns for data access, including entity
classes and data access objects (DAOs). You create an entity class to represent each
table in your design, a DAO interface to specify queries on entities, and a mapper
interface that helps generate DAO instances. The mapper generates code based on the
classes and interfaces you provide.
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For a complete example of using the mapper, you'll want to look at the mapper-
solution branch of the Reservation Service repository. We'll share some of the high-
lights here. Let’s begin by creating a ReservationsByConfirmation entity class which
will represent rows in the reservations_by_confirmation table:

import com.datastax.oss.driver.api.mapper.annotations.Entity;

import com.datastax.oss.driver.api.mapper.annotations.PartitionKey;

import com.datastax.oss.driver.api.mapper.annotations.NamingStrategy;

import static com.datastax.oss.driver.api.mapper.entity.naming.NamingConvention.
SNAKE_CASE_INSENSITIVE;

@Entity
@NamingStrategy(convention = SNAKE_CASE_INSENSITIVE)
public class ReservationsByConfirmation {

@PartitionKey
private String confirmationNumber;

private String hotelld;
private LocalDate startDate;
private LocalDate endDate;
private short roomNumber;
private UUID guestld;

// constructors, get/set methods, hashcode, equals
}

There are several annotations used in this example. The class is denoted as an
@Entity, and also as having a @amingStrategy, which is a way of specifying how the
mapper should correlate Java identifiers to CQL. For example, you can specify a
SNAKE_CASE_INSENSITIVE convention as above, which means that the mapper will
convert Java-style class and member names to lowercase, with underscores separating
words, which is the recommended CQL naming style. Thus the class name Reserva
tionsByConfirmation will be mapped to the reservations_by_confirmation table,
the confirmationNumber member will be mapped to the confirmation_number col-
umn, and so on.

The Reservation Service uses an additional entity class ReservationsByHotelDate
that is used with the reservations_by_hotel_date table. Its implementation is quite
similar, so we won't reproduce it here.

You can also create entity classes corresponding to UDTs. If your domain model con-
tains classes that reference other classes, you can annotate the referenced classes as
user-defined types with the @Entity annotation. The object mapper processes objects
recursively using your annotated types.

Next, you'll create a DAO interface to represent queries on these entity classes:
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import com.datastax.oss.driver.api.core.Paginglterable;
import com.datastax.oss.driver.api.mapper.annotations.*;

@Dao
public interface ReservationDao {

@SelectReservationsByConfirmation
findByConfirmationNumber(
String confirmationNumber);

@Query("SELECT * FROM ${tableId}")
PagingIterable<ReservationsByConfirmation> findAll();

@Insert
void save(ReservationsByConfirmation reservationsByConfirmation);

@Delete
voild delete(ReservationsByConfirmation reservationsByConfirmation);

@Select (customWhereClause = "hotel_id = :hotelld AND start_date = :date")
PagingIterable<ReservationsByHotelDate> findByHotelDate(
@CqlName("hotel_1id") String hotelld,
@CqlName("start_date") LocalDate date);

@Insert
vold save(ReservationsByHotelDate reservationsByHotelDate);

@Delete
void delete(ReservationsByHotelDate reservationsByHotelDate);

}
The ReservationDao interface is annotated as @ao, and the various queries are
marked with annotations such as @Select, @Insert, @elete, and @Query.
The next step is to create a Mapper interface that can be used to obtain DAO instan-
ces:

import com.datastax.oss.driver.api.mapper.annotations.DaoFactory;

import com.datastax.oss.driver.api.mapper.annotations.Mapper;

@Mapper
public interface ReservationMapper {

@DaoFactory
ReservationDao reservationDao();

}
Annotate the interface with @Mapper, and each operation that returns a DAO with
@aoFactory. When you compile the application, the object mapper interprets your
annotations to create a ReservationMapperBuilder class that you can invoke to
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obtain an implementation of ReservationMapper interface that wraps the CqlSes
sion, and from there obtain an object implementing the ReservationDao interface:

ReservationMapper reservationMapper =
new ReservationMapperBuilder(cqlSession).build();

ReservationDao reservationDao = reservationMapper.reservationDao();

Since the mapper and DAO objects are using your CqlSession, you should reuse
them just as you do the CqlSession.

Now you can use the ReservationDao to perform queries using your entity classes.
Create a ReservationsByConfirmation object using a simple constructor that you
can save using the DAO:

ReservationsByConfirmation reservation = new ReservationsByConfirmation(

"RS2GOZ", "NY456", "2020-06-08", "2020-06-10", 111,
UUID.fromString("1b4d86f4-ccff-4256-a63d-45c905df2677"));

reservationDao.save(reservation);

You can use the java.util.UUID.fromString() operation here for convenience; in
most applications, the value would have been passed in via a remote invocation.

The Mapper.save() operation is all you need to execute to perform a CQL INSERT or
UPDATE, as these are really the same operation to Cassandra. The ReservationDao
builds and executes the statement on your behalf.

To retrieve a specific reservation, use the ReservationDao.findByConfirmationNum
ber () operation, passing in an argument list that matches the the partition key:

ReservationsByConfirmation reservation =
reservationDao.findByConfirmationNumber ("RS2G0OZ");

Deleting a reservation is also straightforward:
reservationDao.delete(reservation);

The object mapper documentation describes more advanced features, including DAO
methods that execute asynchronously, the ability to configure CQL statement options
such as TTL or consistency level, and customizing how the mapper handles annota-
tions.

Asynchronous Execution

The CqlSession.execute() operation is synchronous, which means that it blocks
until a result is obtained or an error occurs, such as a network timeout. The driver
also provides the asynchronous executeAsync() operation to support nonblocking
interactions with Cassandra. These nonblocking requests can make it simpler to send
multiple queries in parallel to speed performance of your client application.
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You could take any of the Statements from the examples above and execute it asyn-
chronously:

CompletionStage<AsyncResultSet> resultStage = cqlSession.executeAsync(state-
ment);

The result is of the CompletionStage type introduced in Java 8.

A Future is a Java generic type used to capture the result of an asynchronous opera-
tion. Each Future can be checked to see whether the operation has completed, and
then queried for the result of the operation according to the bound type. There are
also blocking wait() operations to wait for the result. A Future can be cancelled if
the caller is no longer interested in the result of the operation. The Future class is a
useful tool for implementing asynchronous programming patterns, but requires
either blocking or polling to wait for the operation to complete.

To address this drawback, the Java driver leverages the ListenableFuture interface
from Google’s Guava framework. The ListenableFuture interface extends Future,
and adds an addListener() operation that allows the client to register a callback
method that is invoked when the Future completes. The callback method is invoked
in a thread managed by the driver, so it is important that the method complete
quickly to avoid tying up driver resources. The ResultSetFuture is bound to the
ResultSet type.

Additional Asynchronous Operations

In addition to the CqlSession.executeAsync() operation, the
driver supports several other asynchronous operations, including
CqlSession.closeAsync(), CqlSession.prepareAsync(), and
several operations on the object mapper. You can also build the

CqlSession asynchronously using CqlSessionBuilder.buildA
sync().

Driver Configuration

You've already looked at a few of the available options for configuring the driver, but
now let’s take a step back and look at its overall configuration approach.

File-based configuration

While the CqlSession may be configured programmatically via the CqlSes

sion.Builder class, the Java driver also supports a file-based configuration approach
which provides a fuller set of configuration options. File-based configuration is based
on the Typesafe Config project, an open source library that provides configuration
for JVM languages. In most cases it is preferable to use configuration values based on
a configuration file rather than programmatic statements. For example, the configu-
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ration values provided above could be specified in a configuration file such as the one
provided for the Reservation Service:

datastax-java-driver {
basic {
contact-points = [ "127.0.0.1:9042", "127.0.0.2:9042" ]
session-keyspace = reservation
}
}
The configuration file above is written in the Human-Optimized Config Object Nota-
tion (HOCON) format. The Java driver uses the conventions of the Typesafe Config
library for configuration file locations; it searches the Java classpath for files named
application.conf, application. json, or application.properties. The configura-
tion loader is a pluggable interface which you can override to create your own imple-
mentation.

Basic configuration options

The Java driver divides configuration values into two categories: basic configuration
values that are customized most frequently, and advanced configuration values that
are used less frequently. The basic options include the following:

« Contact points and keyspace name, as above

+ A session-name that will be used in log messages and metrics (if none is pro-
vided, they will be generated in the form si1, s2, and so on for each distinct
CqlSession created)

o The config-reload-interval that specifies how often configuration values will
be reloaded from the file (defaults to 5 minutes)

o Default parameters applied to each request, including the request. timeout, the
request.consistency (consistency level), and the request.page-size, which
determines how many rows will be retrieved at a time for larger queries

o The load-balancing-policy, which we'll discuss in “Load balancing” on page
179

You can configure advanced options on a CqlSession, including query execution,
connection management, security, logging, and metrics. We'll examine several of
these options in later sections. The DataStax documentation provides a reference
configuration file, which is an excellent resource for learning about all of the available
configuration options.
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Load balancing

As discussed in Chapter 6, a query can be made to any node in a cluster, which is then
known as the coordinator node for that query. Depending on the contents of the
query, the coordinator may communicate with other nodes in order to satisfy the
query. If a client directs all of its queries at the same node, this will produce an unbal-
anced load on the cluster, especially if other clients are doing the same.

To get around this issue, the driver provides a pluggable mechanism to balance the
query load across multiple nodes. Load balancing is implemented by selecting an
implementation of the com.datastax.oss.driver.api.core.loadbalancing.Load
BalancingPolicy interface.

Each LoadBalancingPolicy must provide a distance() operation to classify each
node in the cluster as local, remote, or ignored, according to the HostDistance enu-
meration. The driver prefers interactions with local nodes and maintains more con-
nections to local nodes than remote nodes. The other key operation is
newQueryPlan(), which returns a list of nodes in the order they should be queried.
The LoadBalancingPolicy interface also contains operations that are used to inform
the policy when nodes are added or removed, or go up or down. These operations
help the policy avoid including down or removed nodes in query plans.

Versions of the Java driver through the 3.x series provided multiple LoadBalancingPo
licy implementations with a composable API that allowed a custom selection of
behaviors. Beginning with the 4.0 release, the DataStax Java Driver ships with a single
default LoadBalancingPolicy to simplify the developer experience. This default
implementation reflects an opinionated point of view based on best practices
observed from many deployments, including the following behaviors:

Round-robin queries
The policy allocates requests across the nodes in the cluster in a repeating pattern
to spread the processing load (equivalent to the RoundRobinPolicy from the leg-
acy driver).

Token awareness
Whenever you use a PreparedStatement, the policy uses the token value of the
partition key in order to select a node that is a replica for the desired data, thus
minimizing the number of nodes that must be queried (equivalent to the TokenA
warePolicy from the legacy driver).

Data center awareness
The policy requires setting a local data center. The default load balancing policy
will only include nodes in the local data center as part of its query plans. The
local data center must be identified explicitly when building the CqlSession via
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the withLocalDataCenter() operation, or via the configuration property
basic.load-balancing-policy.local-datacenter.

This is a difference from the legacy driver, which provided a DCAwareRoundRobin
Policy that would include remote nodes in query plans after local nodes. This
was intended as a reliability mechanism in case all replicas in the local data center
were unavailable. In practice, however, if all the replicas in a local data center are
down, it is typically a broader outage at the data center level, and shifting traffic
to other nodes has proven to have undesirable side effects and be difficult to

debug.

Should you wish to set a different default LoadBalancingPolicy, you may specify it
when building a CqlSession via the withLoadBalancingPolicy() operation, or by
configuring the properties in the basic.load-balancing-policy group.

Retrying failed queries

When Cassandra nodes fail or become unreachable, the driver automatically and
transparently tries other nodes, and schedules reconnection to the dead nodes in the
background according to the configured reconnection policy. The reconnection policy
is determined according to the advanced.reconnection-policy configuration
options. Two reconnection policies are provided: the ExponentialReconnectionPo
licy and the ConstantReconnectionPolicy.

Because temporary changes in network conditions can also make nodes appear off-
line, the driver also provides a mechanism to retry queries that fail due to protocol or
network-related errors. This removes the need to write retry logic in client code.

The driver retries failed queries according to the provided implementation of the
com.datastax.oss.driver.api.core.retry.RetryPolicy interface. The onReadTi
meout(), onWriteTimeout(), and onUnavailable() operations define the behavior
that should be taken when a query fails with protocol— or network-related excep-
tions ReadTimeoutException, WriteTimeoutException, or UnavailableException,
respectively. The onErrorResponse() operation describes the behavior for handling
other recoverable server errors, and onRequestAborted() handles cases in which the
driver aborts a request before the server responds.

The RetryPolicy operations return a RetryDecision, which indicates whether the
query should be retried, and if so, at what consistency level. If the exception is not
retried, it can be rethrown or ignored, in which case the query operation will return
an empty ResultSet.

The 4.0 release of the driver provides a single opinionated implementation of the Ret
ryPolicy based on best practices. Releases through 3.x included a FallthroughRetry
Policy that never recommended retries, and a
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DowngradingConsistencyRetryPolicy that downgrades the consistency level
required on retries, as an attempt to get the query to succeed. The issue with the Down
gradingConsistencyRetryPolicy was: if you are willing to accept a downgraded
consistency level under some circumstances, do you really require a higher consis-
tency level for the general case?

The RetryPolicy implementation can be overridden using the advanced.retry-
policy configuration.

Speculative execution

While it’s great to have a retry mechanism that automates the response to network
timeouts, you don't often have the luxury of being able to wait for timeouts or even
long garbage collection pauses. To speed things up, the driver provides a speculative
execution feature. If the original coordinator node for a query fails to respond in a
predetermined interval, the driver can preemptively start an additional execution of
the query against a different coordinator node. When one of the queries returns, the
driver provides that response and cancels any other outstanding queries.

Speculative execution is disabled by default via the NoSpeculativeExecutionPolicy,
but can be enabled on a CqlSession by setting the ConstantSpeculativeExecution
Policy. Here’s an example of how you configure this policy in the configuration file
by specifying a maximum number of executions and a constant delay between execu-
tions (in milliseconds):
advanced. speculative-execution-policy {
class = ConstantSpeculativeExecutionPolicy
max-executions = 3

delay = 100 milliseconds
}

You may create your own policy by implementing the com.data
stax.oss.driver.api.core.specex.SpeculativeExecutionPolicy interface.

Connection pooling

Because the CQL native protocol is asynchronous, it allows multiple simultaneous
requests per connection; the maximum is 128 simultaneous requests in protocol v2,
while v3 and later allow up to 32,768 simultaneous requests. Because of this larger
number of simultaneous requests, fewer connections per node are required. In fact,
the default is a single connection per node.

Connection pool settings are configurable via the advanced.connection configura-
tion options, including the number of connections to use for local and remote hosts,
and the maximum number of simultaneous requests per connection (defaults to
1024). While the v4 driver does not provide the ability to scale the number of connec-
tions up and down as with previous versions, you can adjust these settings by updat-
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ing the configuration file, and the changes will be applied at the next time the
configuration file is reloaded.

The driver uses a connection heartbeat to make sure that connections are not closed
prematurely by intervening network devices. This defaults to 30 seconds but can be
overridden using the advanced. heartbeat configuration options.

Protocol version

The driver supports multiple versions of the CQL native protocol. Cassandra 4.0 uses
version CQL protocol version 5, while Cassandra 3.X releases support version 4.

By default, the driver negotiates the protocol version when establishing connections,
even correctly handling connections to mixed clusters in which multiple versions of
Cassandra are in use. You can force a protocol version using the advanced.proto
col.version configuration option.

Compression

The driver provides the option of compressing messages between your client and
Cassandra nodes according to the compression options supported by the CQL native
protocol. Enabling compression reduces network bandwidth consumed by the driver,
at the cost of additional CPU usage for the client and server.

Currently there are two compression algorithms available, LZ4 and SNAPPY. The com-
pression defaults to NONE but can be overridden by setting the advanced.proto
col.compression configuration property.

Driver security

The driver provides a pluggable authentication mechanism that can be used to sup-
port a simple username/password login, or integration with other authentication sys-
tems. By default, no authentication is performed. You can select an authentication
provider by  passing an  implementation of the  com.data
stax.oss.driver.api.core.auth.AuthProvider interface, such as the PlainTex
tAuthProvider to the CqlSessionBuilder.withAuthProvider() operation, or by
setting the advanced. auth-provider section in your configuration file. You can con-
figure the PlainTextAuthProvider and provide your username and password by
using the CqlSessionBuilder.withAuthCredentials() operation.

The driver can also encrypt its communications with the server to ensure privacy.
Client-server encryption options are specified by each node in its cassandra.yaml file.
The driver complies with the encryption settings specified by each node.

We'll examine authentication, authorization, and encryption from both the client and
server perspective in more detail in Chapter 14.

182 | Chapter 8: Application Development with Drivers


https://docs.datastax.com/en/developer/java-driver/latest/manual/core/native_protocol/

Execution profiles

While some of the configuration values that you've learned can be overridden on
individual Statements, many of them cannot. So what can you do when the configu-
ration values chosen are appropriate for some of your queries, but not others? The
driver allows you to create execution profiles, which are settings of configuration val-
ues that can be applied to individual Statements as an overlay over the default con-
figuration. To learn which configuration options can be set in a profile, see the
reference configuration file.

For example, let’s say your default settings include a request timeout of one second
and a consistency level of LOCAL_QUORUM. You could create an execution profile to use
with requests that you want to give a stronger consistency by adding this to the pro
files section of the configuration file:

datastax-java-driver {
profiles {
long_request {
basic.request.timeout = 3 seconds
basic.request.consistency = QUORUM
}
}

Then, you can apply the values to a Statement:
statement.setExecutionProfileName("long_request");

There is also a setExecutionProfileName() operation available when using the Sim
pleStatementBuilder. Or, if you create a PreparedStatement from a SimpleState
ment (using CqlSession.prepare()), any execution profile you have set will be
inherited by any BoundStatements created from the PreparedStatement.

Metadata
To access the cluster metadata, invoke the CqlSession.getMetadata() method,
which returns an object implementing the com.data

stax.oss.driver.api.core.metadata.Metadata interface. This object provides
information about the cluster at a snapshot in time, including the nodes in the cluster,
the tokens assigned to each node, and the schema, including keyspaces and tables.

Node discovery

A CqlSession maintains a control connection to the first node it connects with, which
it uses to maintain information on the state and topology of the cluster. Using this
connection, the driver will discover all the nodes currently in the cluster, and you can
obtain this information through the Metadata.getNodes() operation, which returns
a list of com.datastax.oss.driver.api.core.metadata.Node objects to represent
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each node. You can view the state of each node through the Node.getState() opera-
tion, or register an implementation of the com.data
stax.oss.driver.api.core.metadata.NodeStatelListener interface to receive
callbacks when nodes are added or removed from the cluster, or when they are up or
down. This state information is also viewable in the driver logs, which we'll discuss
shortly.

Schema access

The Metadata class also allows the client to learn about the schema in a cluster,
including operations that provide descriptions of individual keyspaces and tables.
The schema version in use in a cluster can change over time as keyspaces and tables
are created, altered, and deleted.

We discussed Cassandra’s support for eventual consistency at great length in Chap-
ter 2. Because schema information is itself stored using Cassandra, it is also eventu-
ally consistent, and as a result it is possible for different nodes to have temporarily
different versions of the schema. The driver has internal safeguards to check for
schema agreement before initiating any statement that would change the schema. The
driver provides a notification mechanism for clients to learn about schema changes
by registering a com.datastax.oss.driver.api.core.metadata.schema.Schema
ChangelListener with the CqlSession as it is built using the withSchemaChangelLis
tener() operation on the builder, or via the advanced.schema-change-listener
configuration option.

In addition to the schema access you've just examined in the Metadata class, the Java
driver also provides a facility for managing schema in the com.data
stax.oss.driver.api.querybuilder package. The SchemaBuilder provides a
fluent-style API for creating Statements representing operations such as CREATE,
ALTER, and DROP on keyspaces, tables, indexes, and user-defined types (UDTs).

For example, you could create the reservations_by_confirmation table using the
createTable() schema builder:

import static com.datastax.oss.driver.api.querybuilder.SchemaBuilder.createTa-
ble;
import com.datastax.oss.driver.api.core.type.DataTypes;

cqlSession.execute(createTable("reservation", "reservations_by_confirmation")
.1fNotExists()
.withPartitionKey("confirmation_number, DataTypes.TEXT)
.withColumn("hotel_id", DataTypes.TEXT)
.withColumn("start_date", DataTypes.DATE)
.withColumn("end_date", DataTypes.DATE)
.withColumn("room_number", DataTypes.SMALLINT)
.withColumn("quest_id", DataTypes.UUID)
.build());
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Managing Case-Sensitive Identifiers with the Java Driver

As you learned in Chapter 4, CQL is case-sensitive by default.
While the practice is generally discouraged, it is possible to create
case-sensitive names for keyspaces, tables, and columns by using
quotes around identifiers in CQL. In order to simplify the handling
of case sensitivity, the Java driver uses the CqlIdentifier classasa
wrapper for all identifiers in its schema API. If you are writing code
that manipulates schema, it's a good practice to make use of these
identifiers as well. Java Driver APIs that accept identifiers as argu-
ments support both Java String (as shown above) and CqlIdenti
fier formats (as shown in the Reservation Service
implementation).

Debugging and Monitoring

The driver provides features for monitoring and debugging your clients use of Cas-
sandra, including facilities for logging and metrics. There are also capabilities for
query tracing and tracking slow queries, which you’ll learn about in Chapter 13.

Driver logging

As you will learn in Chapter 11, Cassandra uses a logging API called Simple Logging
Facade for Java (SLF4]). The Java driver uses the SLF4] API for logging as well. In
order to enable logging on your Java client application, you need to provide a compli-
ant SLF4] implementation on the classpath, such as Logback (used by the Reservation
Service) or Log4j. The Java driver provides information at multiple levels; the ERROR,
WARN, and INFO levels are the most useful to application developers.

You configure logging by taking advantage of Logback’s configuration mechanism,
which supports separate configuration for test and production environments. Log-
back inspects the classpath first for the file logback-test.xml representing the test con-
figuration, and then if no test configuration is found, it searches for the file
logback.xml. Here’s an example extract from a logback.xml file configuration file that
enables the INFO log level for the Java driver:

<configuration>

<!-- other appenders and loggers -->

<logger name="com.datastax.oss.driver" level="INF0"/>
</configuration>

For more detail on Logback configuration, including sample configuration files for
test and production environments, see the configuration page or the Reservation Ser-
vice implementation.
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Driver metrics

Sometimes it can be helpful to monitor the behavior of client applications over time
in order to detect abnormal conditions and debug errors. The Java driver collects
metrics on its activities and makes these available using the Dropwizard Metrics
library. The driver reports metrics on connections, task queues, queries, and errors
such as connection errors, read and write timeouts, retries, and speculative execu-
tions. A full list of metrics is available in the reference configuration.

You can access the Java driver metrics locally via the CqlSession.getMetrics()
operation. The Metrics library can also integrate with the Java Management Exten-
sions (JMX) to allow remote monitoring of metrics. We'll discuss the remote moni-
toring of metrics from Cassandra nodes in Chapter 11, and the same techniques
apply to gathering metrics from client applications. JMX reporting is disabled by
default in the v4 drivers (it was enabled by default in v3), but can be configured.

Other Cassandra Drivers

DataStax Python Driver
The DataStax Python Driver was introduced in 2014, replacing the Pycassa client
built on Cassandra’s legacy Thrift interface as the primary Python driver for Cas-
sandra. The driver supports Python 2.7 as well as current Python 3 versions back
to 3.4. You can install the driver by running the Python installer pip:

$ pip install cassandra-driver

The Python driver includes an object mapper called cglengine and makes use of
third-party libraries for performance, compression, and metrics. The driver
source is available on GitHub.

DataStax Node.js Driver
The DataStax Node.js Driver was introduced in October 2014, based on the node-
cassandra-cql project developed by Jorge Bay.

The Node.js driver is installed via the node package manager (NPM):

$ npm install cassandra-driver

As with other DataStax drivers, the source code is available on GitHub.

DataStax C# Driver
First released in July 2013, the DataStax C# Driver provides support for Windows
clients using the .NET framework. For this reason, it is also frequently referred to
as the “NET Driver”

The C# Driver is available on NuGet, the package manager for the Microsoft
development platform. Within PowerShell, run the following command at the
Package Manager Console:
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PM> Install-Package CassandraCSharpDriver

To use the driver, create a new project in Visual Studio and add a using directive
that references the Cassandra namespace. The C# Driver integrates with Lan-
guage Integrated Query (LINQ), a Microsoft NET Framework component that
adds query capabilities to .NET languages; there is a separate object mapper
available as well.

DataStax C/C++ Driver
The DataStax C/C++ Driver was released in February 2014. The C/C++ Driver is
a bit different than the other drivers in that its API focuses on asynchronous
operations to the exclusion of synchronous operations.

The C/C++ driver uses the libuv library for asynchronous I/O operations, and
optionally uses the OpenSSL library if needed for encrypted client-node connec-
tions. Instructions for compilation and linking vary by platform, so see the driver
documentation for details.

DataStax Ruby and PHP Drivers
DataStax also has drivers available for Ruby and PHP, although these are consid-
ered to be in maintenance mode and are updated only for critical bug fixes.

JDBC and ODBC Drivers
Open Database Connectivity (ODBC) is a standard developed by Microsoft that
allows applications to access data using SQL. Java Database Connectivity (JDBC)
is a Java API that provides an SQL abstraction—see the java.sql package. JDBC
and ODBC drivers are available from vendors, including Simba and Progress
Software.

GoCQL Driver
The Go language created at Google has seen a rapid increase in popularity for
server applications since its public introduction in 2009. The language is similar
to C syntax but contains similar improvements in terms of memory management
and concurrency.

GoCQL is an open source driver for the Go language. It is under active develop-
ment but provides many of the same features as the DataStax drivers, including
connection management, statement execution, paging, batches, and more.

Summary

You should now understand the various drivers available for Cassandra, the features
they provide, and how to install and use them. We gave particular attention to the
DataStax Java Driver in order to get some hands-on experience, which should serve
you well even if you choose to use one of the other DataStax or community drivers.
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You'll continue to learn other driver features in the coming chapters as we discuss
more details of reading and writing.
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CHAPTER9
Writing and Reading Data

Now that you understand the data model and how to use a simple client, let’s dig
deeper into the different kinds of queries you can perform in Cassandra to write and
read data. We'll also take a look behind the scenes to see how Cassandra handles your
queries. Understanding these details will help you design queries that will perform
well and provide the behavior you need.

As with the previous chapter, we've included code samples using the DataStax Java
Driver to help illustrate how these concepts work in practice.

Writing

Let’s start by noting some basic properties of writing data to Cassandra. First, writing
data is very fast in Cassandra, because its design does not require performing disk
reads or seeks. The memtables and SSTables save Cassandra from having to perform

these operations on writes, which slows down many databases. All writes to disk in
Cassandra are append only.

Because of the database commit log and hinted handoff design, the database is always
writable, and within a row, writes are always atomic.

Write Consistency Levels

Cassandras tuneable consistency levels mean that you can specify in your queries
how much consistency you require on writes. A higher consistency level means that
more replica nodes need to respond, indicating that the write has completed. Higher
consistency levels also come with a reduction in availability, as more nodes must be
operational for the write to succeed. The implications of using the different consis-
tency levels on writes are shown in Table 9-1.
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Table 9-1. Write consistency levels

Consistency level  Implication

ANY Ensure that the value is written to a minimum of one replica node before returning to the client,
allowing hints to count as a write.

ONE, TWO, Ensure that the value is written to the commit log and memtable of at least one, two, or three nodes

THREE before returning to the client.

LOCAL_ONE Similar to ONE, with the additional requirement that the responding node is in the local data center.

QUORUM Ensure that the write was received by at least a majority of replicas ((replication factor/2)+
1).

LOCAL_QUORUM  Similar to QUORUM, where the responding nodes are in the local data center.
EACH_QUORUM Ensure that a QUORUM of nodes respond in each data center.

ALL Ensure that the number of nodes specified by replication factor received the write before
returning to the client. If even one replica is unresponsive to the write operation, fail the operation.

The most notable consistency level for writes is the ANY level. This level means that
the write is guaranteed to reach at least one node, but it allows a hint to count as a
successful write. That is, if you perform a write operation and the node that the opera-
tion targets for that value is down, the server will make a note to itself, called a hint,
which it will store until that node comes back up, or until the stored hint passes the
expiration window specified by the max_hint_window_in_ms property defined for the
node. Once the node is up, the server will detect this, look to see whether it has any
writes that it saved for later in the form of a hint, and then write the value to the
revived node.

Using the consistency level of ONE on writes means that the write operation will be
written to both the commit log and the memtable. That means that writes at ONE are
durable, so this level is the minimum level to use to achieve fast performance and
durability. If this node goes down immediately after the write operation and before
the memtable has been flushed to disk, the value will have been written to the commit
log, which can be replayed when the server is brought back up to ensure that it still
has the value.

Default Consistency Levels

Cassandra clients typically support setting a default consistency level for all queries,
as well as a specific level for individual queries. For example, in cqlsh you can check
and set the default consistency level using the CONSISTENCY command:

cqlsh> CONSISTENCY;

Current consistency level is ONE.
cqlsh> CONSISTENCY LOCAL_ONE;
Consistency level set to LOCAL_ONE.
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In the DataStax Java Driver, the default consistency level can be set through the con-
figuration option:

basic.request.consistency = QUORUM

If you do not configure this, it will be set to LOCAL_ONE. The default consistency level
can be overridden on an individual statement:

Statement statement = ...
statement.setConsistencyLevel(ConsistencylLevel.LOCAL_QUORUM);

The Cassandra Write Path

The write path describes how data modification queries initiated by clients are pro-
cessed, eventually resulting in the data being stored on disk. We'll examine the write
path in terms of both interactions between nodes and the internal process of storing
data on an individual node. An overview of the write path interactions between nodes
in a multiple data center cluster is shown in Figure 9-1.

The write path begins when a client initiates a write query to a Cassandra node which
serves as the coordinator for this request. The coordinator node uses the partitioner
to identify which nodes in the cluster are replicas, according to the replication factor
for the keyspace. The coordinator node may itself be a replica, especially if the client
is using a token-aware load balancing policy. If the coordinator knows that there are
not enough replicas up to satisfy the requested consistency level, it returns an error
immediately.

Next, the coordinator node sends simultaneous write requests to all local replicas for
the data being written. If the cluster spans multiple data centers, the local coordinator
node selects a remote coordinator in each of the other data centers to forward the
write to the replicas in that data center. Each of the remote replicas acknowledges the
write directly to the original coordinator node.

This ensures that all nodes will get the write as long as they are up. Nodes that are
down will not have consistent data, but they will be repaired via one of the anti-
entropy mechanisms: hinted handoft, read repair, or anti-entropy repair.
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Figure 9-1. Interactions between nodes on the write path

The coordinator waits for the replicas to respond. Once a sufficient number of repli-
cas have responded to satisfy the consistency level, the coordinator acknowledges the
write to the client. If a replica doesn’t respond within the timeout, it is presumed to be
down, and a hint is stored for the write. A hint does not count as a successful replica
write unless the consistency level ANY is used.

Figure 9-2 depicts the interactions that take place within each replica node to process
a write request. These steps are common in databases that share the log-structured
merge tree design we explored in Chapter 6.
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Figure 9-2. Interactions within a node on the write path

First, the replica node receives the write request and immediately writes the data to
the commit log. Next, the replica node writes the data to a memtable. If row caching
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is used and the row is in the cache, the row is invalidated. We'll discuss caching in
more detail under the read path.

If the write causes either the commit log or memtable to pass its maximum thresh-
olds, a flush is scheduled to run. We'll learn how to tune these thresholds in Chap-
ter 13.

At this point, the write is considered to have succeeded and the node can reply to the
coordinator node or client.

After returning, the node executes a flush if one was scheduled. The contents of each
memtable are stored as SSTables on disk, and the commit log is cleared. After the
flush completes, additional tasks are scheduled to check if compaction is needed, and
then a compaction is performed if necessary.

More Detail on the Write Path

Of course, this is a simple overview of the write path that doesn’t
take into account variants such as counter modifications and mate-
rialized views. For example, writes to tables with materialized views
are more complex because partitions must be locked while consen-
sus is negotiated between replicas. Cassandra leverages logged
batches internally in order to maintain materialized views.

Writing Files to Disk

Let’s examine a few more details on the files Cassandra writes to disk, including com-
mit logs and SSTables.

Commit log files

Cassandra writes commit logs to the filesystem as binary files. By default, the commit
log files are found under the SCASSANDRA_HOME/data/commitlog directory.

Commit log files are named according to the pattern CommitLog-<version><time-
stamp>.log. For example: CommitLog-7-1566780133999.log. The version is an integer
representing the commit log format. For example, the version for the 4.0 release is 7.
You can find the versions in use by release in the org.apache.cassandra.db.commi
tlog.CommitLogDescriptor class.

SSTable files

When SSTables are written to the filesystem during a flush, there are actually several
files that are written per SSTable. Let’s take a look at the default location under the
$CASSANDRA_HOME/data/data directory to see how the files are organized on
disk.
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Forcing SSTables to Disk

If you're following along with the exercises in this book on a real
Cassandra node, you may want to execute the nodetool flush
command at this point, as you may not have entered enough data
yet for Cassandra to have flushed data to disk automatically. You’ll
learn more about this command in Chapter 12.

Looking in the data directory, you’'ll see a directory for each keyspace. These directo-
ries, in turn, contain a directory for each table, consisting of the table name plus a
UUID. The purpose of the UUID is to distinguish between multiple schema versions.

Each of these directories contains SSTable files which contain the stored data. Here is
an example directory path: hotel/hotels-3677bbb0155811e5899aa9fac1d00bce.

Each SSTable is represented by multiple files that share a common naming scheme.
The files are named according to the pattern <version>-<generation>-
<implementation>-<component>.db. The significance of the pattern is as follows:

o The version is a two-character sequence representing the major/minor version of
the SSTable format. For example, the version for the 4.0 release is na. You can
learn more about various versions in the org.apache.cassan
dra.io.sstable.Descriptor class.

o The generation is an index number which is incremented every time a new
SSTable is created for a table.

o The implementation is a reference to the implementation of the org.apache.cas
sandra.io.sstable.format.SSTableWriter interface in use. As of the 4.0
release the value is “big,” which references the “Bigtable format” found in the
org.apache.cassandra.io.sstable.format.big.BigFormat class.

Each SSTable is broken up into multiple files or components. These are the compo-
nents as of the 3.0 release:

Data.db
These are the files that store the actual data and are the only files that are pre-
served by Cassandras backup mechanisms, which you’ll learn about in Chap-
ter 12.

CompressionInfo.db
Provides metadata about the compression of the Data.db file.

Digest.crc32
Contains a CRC32 checksum for the *-Data.db file.
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Filter.db
Contains the bloom filter for this SSTable.

Index.db
Provides row and column offsets within the corresponding *-Data.db file. The
contents of this file are read into memory so that Cassandra knows exactly where
to look when reading datafiles.

Summary.db
A sample of the index for even faster reads.

Statistics.db
Stores statistics about the SSTable which are used by the nodetool tablehisto
grams command.

TOC.txt
Lists the file components for this SSTable.

Older releases support different versions and filenames. Releases prior to 2.2 prepend
the keyspace and table name to each file, while 2.2 and later releases leave these out
because they can be inferred from the directory name.

We'll investigate some tools for working with SSTable files in Chapter 12.

Lightweight Transactions

As we've discussed previously in Chapter 1, Cassandra and many other NoSQL data-
bases do not support transactions with full ACID semantics supported by relational
databases. However, Cassandra does provide two mechanisms that offer some trans-
actional behavior: lightweight transactions and batches.

Cassandra’s lightweight transaction (LWT) mechanism uses the Paxos algorithm
described in Chapter 6. LWTs were introduced in the 2.0 release. LWTs support the
following semantics:

o On an INSERT, adding the IF NOT EXISTS clause will ensure that you do not
overwrite an existing row with the same primary key. This is frequently used in
cases where uniqueness is important, such as managing user identity or accounts,
or maintaining unique reservation records, as you’ll see. Alternatively, the IF
EXISTS clause will only update the row with the provided primary key if it is
already present in the database. This is effectively limiting Cassandra’s upsert
behavior.

« On an UPDATE, adding an IF <conditions> clause will perform a check of one or
more provided conditions, where multiple conditions are separated by an AND.
Each condition is a check against a column in a WHERE clause using operators,

Writing | 195



including equality operators (=, !=), comparison operators (>, >=, <, <), and the
IN operator. This is frequently used to make sure that a row has an expected value
that cannot change before a write occurs. If a transaction fails because the exist-
ing values did not match the ones you expected, Cassandra will include the cur-
rent values so you can decide whether to retry or abort without needing to make
an extra request. This form of lightweight transaction is frequently used for man-
aging inventory counts.

Let’s say you wanted to create a record for a new hotel, using the data model intro-
duced in Chapter 5. You want to make sure that youre not overwriting a reservation
with the same confirmation number, so you add the IF NOT EXISTS syntax to your
INSERT command:

cqlsh> INSERT INTO reservation.reservations_by_confirmation (confirm_number,
hotel_1id, start_date, end_date, room_number, guest_id) VALUES (

'RS2GOZ', 'NY456', '2020-06-08', '2020-06-10', 111, 1b4d86f4-ccff-4256-
a63d-45c905df2677) IF NOT EXISTS;

[applied]

This command checks to see if there is a record with the partition key, which for this
table consists of the confirm_number. So let’s find out what happens when you exe-
cute this command a second time:

cqlsh> INSERT INTO reservation.reservations_by_confirmation (confirm_number,
hotel_1id, start_date, end_date, room_number, guest_id) VALUES ('RS2GOZ',
'NY456', '2020-06-08', '2020-06-10', 111, 1b4d86f4-ccff-4256-a63d-45c905df2677)
IF NOT EXISTS;

[applied] | confirm_number | end_date | guest_id
| hotel_id | room_number | start_date
___________ o
B L T L L LT T T e Fommmmmmeaaa Hommmmmaeaas
False | RS2GOZ | 2020-06-10 | 1b4d86f4-ccff-4256-
a63d-45c905df2677 | NY456 | 111 | 2020-06-08

In this case, the transaction fails, because there is already a reservation with the num-
ber “RS2G0Z,;” and cqlsh helpfully echoes back a row containing a failure indication
and the values you tried to enter.

It works in a similar way for updates. For example, you might use the following state-
ment to make sure youre changing the end date for a reservation, but only if the pre-
vious value is the end date you expect:

cqlsh> UPDATE reservation.reservations_by_confirmation SET end_date='2020-06-12"
WHERE confirm_number='RS2GOZ' IF end_date='2020-06-10';

[applied]
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Similar to what you saw with multiple INSERT statements, entering the same UPDATE
statement again fails because the value has already been set. Because of Cassandra’s
upsert model, the IF NOT EXISTS syntax available on INSERT, and the IF x=y syntax
on UPDATE represent the main semantic difference between these two operations.

Using Lightweight Transactions on Schema Creation

CQL also supports the use of the IF NOT EXISTS option on the cre-
ation of keyspaces and tables. This is especially useful if you are
scripting multiple schema updates.

Let’s implement the reservation INSERT using the DataStax Java Driver. When execut-
ing a conditional statement, the ResultSet will contain a single Row with a column
named applied of type boolean. This tells us whether the conditional statement was
successful or not. You can also use the wasApplied() operation on the statement:

cqlsh>SimpleStatement reservationInsert = SimpleStatement.builder(
"INSERT INTO reservations_by_confirmation (confirm_number, hotel_id,
start_date, end_date, room_number, guest_id) VALUES (?, 2, ?, ?, 2, 2)")
.addPositionalvalue("RS2GOZ")
.addPositionalvalue("NY456")
.addPositionalvalue("2020-06-08")
.addPositionalvalue("2020-06-10")
.addPositionalvalue(111)
.addPositionalvValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
.ifNotExists()
.build();

ResultSet reservationInsertResult = session.execute(reservationInsert);
boolean wasApplied = reservationInsertResult.wasApplied();

if (wasApplied) {
Row row = reservationInsertResult.one();
row.getBool("applied");

}

This is a simple example using hardcoded values for readability rather than variables.
You can find a working code sample for inserting reservation data using lightweight
transactions on the lightweight-transaction-solution branch of the Reservation
Service repository.

Conditional write statements use a serial consistency level in addition to the regular
consistency level. The serial consistency level determines the number of nodes that
must reply in the Paxos phase of the write, when the participating nodes are negotiat-
ing about the proposed write. The two available options are shown in Table 9-2.
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Table 9-2. Serial consistency levels

Consistency level Implication

SERIAL This is the default serial consistency level, indicating that a quorum of nodes must respond.

LOCAL_SERIAL Similar to SERIAL, but indicates that the transaction will only involve nodes in the local data center.

The serial consistency level can apply on reads as well. If Cassandra detects that a
query is reading data that is part of an uncommitted transaction, it commits the
transaction as part of the read, according to the specified serial consistency level.

You can set a default serial consistency level for all statements in cqlsh using the
SERIAL CONSISTENCY statement, or in the DataStax Java Driver using the serial-
consistency configuration option. To override the configured level on an individual
statement, use the Statement.setSerialConsistencyLevel() operation.

Batches

While lightweight transactions are limited to a single partition, Cassandra provides a
batch mechanism that allows you to group multiple modifications into a single state-
ment, whether they address the same partition or different partitions.

The semantics of the batch operation are as follows:

 Only modification statements (INSERT, UPDATE, or DELETE) may be included in a
batch.

o Batches may be logged or unlogged, where logged batches have more safeguards.
We'll explain this in more detail below.

« Batches are not a transaction mechanism, but you can include lightweight trans-
action statements in a batch. Multiple lightweight transactions in a batch must
apply to the same partition.

« Counter modifications are only allowed within a special form of batch known as
a counter batch. A counter batch can only contain counter modifications.

Using a batch saves back and forth traffic between the client and the coordinator
node, as the client is able to group multiple statements in a single query. However, the
logged batch places additional work on the coordinator to orchestrate the execution
of the various statements.

Cassandra’s batches are a good fit for use cases such as making multiple updates to a
single partition, or keeping multiple tables in sync. A good example is making modi-
fications to denormalized tables that store the same data for different access patterns.
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Batches Aren’t for Bulk Loading

First-time users often confuse batches for a way to get faster perfor-

mance for bulk updates. This is definitely not the case—batches
" actually decrease performance and can cause garbage collection

pressure. We'll look at tools for bulk loading in Chapter 15.

In previous examples, you've inserted rows into the reservations_by_confirmation
table, but remember that there is also a denormalized table design for reservations:
reservations_by_hotel_date. Lets use a batch to group those writes together.

For a logged batch, use the CQL BEGIN BATCH and APPLY BATCH keywords to sur-
round the statements you wish to include:

cqlsh> BEGIN BATCH
INSERT INTO reservation.reservations_by_confirmation (confirm_number,
hotel_id, start_date, end_date, room_number, guest_id) VALUES ('RS2GOZ',
'NY456', '2020-06-08', '2020-06-10', 111, 1b4d86f4-ccff-4256-a63d-45c905df2677);
INSERT INTO reservation.reservations_by_hotel_date (confirm_number, hotel_id,
start_date, end_date, room_number, guest_id) VALUES ('RS2GOZ', 'NY456',
'2020-06-08"', '2020-06-10', 111, 1b4d86f4-ccff-4256-a63d-45c905df2677);
APPLY BATCH;

The DataStax Java driver supports batches through the com.data
stax.oss.driver.api.core.cql.BatchStatement class. Here’s an example of what
the same batch would look like in a Java client:

SimpleStatement reservationByConfirmationInsert = SimpleStatement.builder(
"INSERT INTO reservations_by_confirmation (confirm_number, hotel_id,
start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, 2, 72, 2)")
.addPositionalvalue("RS2GOZ")
.addPositionalValue("NY456")
.addPositionalvalue("2020-06-08")
.addPositionalValue("2020-06-10")
.addPositionalvalue(111)
.addPositionalValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
.build();

SimpleStatement reservationByHotelDateInsert = SimpleStatement.builder(
"INSERT INTO reservations_by_hotel_date (confirm_number, hotel_id,
start_date, end_date, room_number, guest_1id) VALUES (?, 2, ?, ?, 72, 2)")
.addPositionalValue("RS2GOZ")
.addPositionalvalue("NY456")
.addPositionalValue("2020-06-08")
.addPositionalvalue("2020-06-10")
.addPositionalvalue(111)
.addPositionalvValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
.build();

BatchStatement reservationBatch = new BatchStatement();
reservationBatch.add(reservationByConfirmationInsert);
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reservationBatch.add(reservationByHotelDatelInsert);

cqlSession.execute(reservationBatch);

You can also create batches using a BatchStatementBuilder. You can find an exam-
ple of working with BatchStatement on the batch-statement-solution branch of
the Reservation Service repository.

Creating Counter Batches in DataStax Drivers

The DataStax drivers do not provide separate mechanisms for
counter batches. Instead, you must simply remember to create
batches that include only counter modifications or only non-
counter modifications.

Logged batches are atomic—that is, if the batch is accepted, all of the statements in a
batch will succeed eventually. This is why logged batches are sometimes referred to as
atomic batches. Note that this is not the same definition of atomicity you might be
used to if you have a relational database background. While all updates in a batch
belonging to a given partition key are performed atomically, there is no guarantee
across partitions. This means that modifications to different partitions may be read
before the batch completes.

Here’s how a logged batch works under the covers: the coordinator sends a copy of
the batch called a batchlog to two other nodes, where it is stored in the system.bat
chlog table. The coordinator then executes all of the statements in the batch, and
deletes the batchlog from the other nodes after the statements are completed.

If the coordinator should fail to complete the batch, the other nodes have a copy in
their batchlog and are therefore able to replay the batch. Each node checks its bat-
chlog once a minute to see if there are any batches that should have completed. To
give ample time for the coordinator to complete any in-progress batches, Cassandra
uses a grace period from the timestamp on the batch statement equal to twice the
value of the write_request_timeout_in_ms property. Any batches that are older
than this grace period will be replayed and then deleted from the remaining node.
The second batchlog node provides an additional layer of redundancy, ensuring high
reliability of the batch mechanism.

In an unlogged batch, the steps involving the batchlog are skipped, allowing the write
to complete more quickly. Users who are trying to rapidly insert a lot of data are often
tempted to use unlogged batches. The tradeoff you’ll want to consider is that there is
no guarantee that all of the writes to different partitions will complete successfully,
which could leave the database in an inconsistent state. This risk does not exist when
a batch contains mutations to a single partition. For this reason, if you request a log-
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ged batch with mutations to a single partition, Cassandra actually executes it as an
unlogged batch to give you an extra boost of speed.

Another factor you should consider is the size of batches, measured in terms of the
total data size, in bytes, rather than a specific number of statements. Cassandra enfor-
ces limits on the data size of batch statements to prevent them from becoming arbi-
trarily large and impacting the performance and stability of the cluster. The
cassandra.yaml file contains two properties that control how this works: the
batch_size_warn_threshold_in_kb property defines the level at which a node will
log at the WARN log level that it has received a large batch, while any batch exceeding
the value set batch_size_fail_threshold_in_kb will be rejected and result in error
notification to the client. The batch size is measured in terms of the total amount of
bytes to be sent. For simple statements, the size is the length of each CQL query, but
the size will be lower for prepared statements since only the statement ID and param-
eter values are sent. The warning threshold defaults to 5 KB, while the fail threshold
defaults to 50 KB.

Reading

There are a few basic properties of Cassandra’s read capability that are worth noting.
First, it’s easy to read data because clients can connect to any node in the cluster to
perform reads, without having to know whether a particular node acts as a replica for
that data. If a client connects to a node that doesn’t have the data it’s trying to read,
the node it’s connected to will act as a coordinator node to read the data from a node
that does have it, identified by token ranges.

In Cassandra, reads are generally slower than writes due to file I/O from reading
SSTables. To fulfill read operations, Cassandra typically has to perform seeks, but you
may be able to keep more data in memory by adding nodes, using compute instances
with more memory, and using Cassandra’s caches. Cassandra also has to wait for
responses synchronously on reads (based on consistency level and replication factor),
and then perform read repairs as necessary.

Read Consistency Levels

The consistency levels for read operations are similar to the write consistency levels,
but the way they are handled behind the scenes is slightly different. A higher consis-
tency level means that more nodes need to respond to the query, giving you more
assurance that the values present on each replica are the same. If two nodes respond
with different timestamps, the newest value wins, and that’s what will be returned to
the client. Cassandra will then perform what's called a read repair: it takes notice of
the fact that one or more replicas responded to a query with an outdated value, and
updates those replicas with the most current value so that they are all consistent.
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The possible consistency levels, and the implications of specifying each one for read
queries, are shown in Table 9-3.

Table 9-3. Read consistency levels

Consistency level Implication

ONE, TWO, Immediately return the record held by the first node(s) that respond to the query. The record is checked

THREE against the same record on other replicas. If any are out of date, a read repair is then performed to sync
them all to the most recent value.

LOCAL_ONE Similar to ONE, with the additional requirement that the responding node is in the local data center.

QUORUM Query all nodes. Once a majority of replicas ((replication factor /2)+ 1) respond, return to the

client the value with the most recent timestamp. Then, if necessary, perform a read repair on all
remaining replicas.

LOCAL_QUORUM  Similar to QUORUM, where the responding nodes are in the local data center.
EACH_QUORUM  Ensure that a QUORUM of nodes respond in each data center.

ALL Query all nodes. Wait for all nodes to respond, and return to the client the record with the most recent
timestamp. Then, if necessary, perform a read repair. If any nodes fail to respond, fail the read operation.

As you can see from the table, the ANY consistency level is not supported for read
operations. Notice that the implication of consistency level ONE is that the first node
to respond to the read operation is the value that the client will get—even if it is out
of date. The read repair operation is performed after the record is returned, so any
subsequent reads will all have a consistent value, regardless of the responding node.

Another item worth noting is in the case of consistency level ALL. If you specify ALL,
then you're saying that you require all replicas to respond, so if any node with that
record is down or otherwise fails to respond before the timeout, the read operation
fails. A node is considered unresponsive if it does not respond to a query before the
value specified by read_request_timeout_in_ms in the configuration file. The
default is 5 seconds.

Aligning Read and Write Consistency Levels

The read and write consistency levels you choose to use in your applications are an
example of the flexibility Cassandra provides us to make trade-offs among consis-
tency, availability, and performance.

As you learned in Chapter 6, Cassandra can guarantee strong consistency on reads by
using read and write consistency levels whose sum exceeds the replication factor. One
simple way to achieve this is to require QUORUM for reads and writes. For example, on a
keyspace with a replication factor of 3, QUORUM represents a response from two out of
three nodes. Because 2 + 2 is greater than 3, strong consistency is guaranteed.

If you are willing to sacrifice strong consistency in order to support increased
throughput and more tolerance for downed nodes, you can use lesser consistency lev-
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els. For example, using QUORUM for writes and ONE for reads doesn’'t guarantee strong
consistency, as 2 + 1 is merely equal to 3.

Thinking this through practically, if you are only guaranteed writes to two out of
three replicas, there is certainly a chance that one of the replicas did not receive the
write and has not yet been repaired, and a read at consistency level ONE could go to
that very node.

The Cassandra Read Path

Now let’s take a look at what happens when a client requests data. This is known as
the read path. We'll describe the read path from the perspective of a query for a single
partition key, starting with the interactions between nodes shown in Figure 9-3.

e N\ N

Data Center 1 Data Center 2
Local Remote
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M—read—bm\ @ ’Vm\ @
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Figure 9-3. Interactions between nodes on the read path

The read path begins when a client initiates a read query to the coordinator node. As
on the write path, the coordinator uses the partitioner to determine the replicas, and
checks that there are enough replicas up to satisfy the requested consistency level.
Another similarity to the write path is that a remote coordinator is selected per data
center for any read queries that involve multiple data centers.

If the coordinator is not itself a replica, the coordinator then sends a read request to
the fastest replica, as determined by the dynamic snitch. The coordinator node also
sends a digest request to the other replicas. A digest request is similar to a standard
read request, except the replicas return a digest, or hash, of the requested data.

The coordinator calculates the digest hash for data returned from the fastest replica
and compares it to the digests returned from the other replicas. If the digests are con-
sistent, and the desired consistency level has been met, then the data from the fastest
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replica can be returned. If the digests are not consistent, then the coordinator must
perform a read repair, as discussed in the following section.

Figure 9-4 shows the interactions that take place within each replica node to process
read requests.

2. Check key
cache for index

Cassandra Daemon (JVM

1.Ifrowis
3. Check Memtables Key Caches Row Caches present in cache,
memtable return it
Disk 5. If row caching
Commit Logs SSTables Hints (2.2+) enabled, add
row to cache

4. Check SSTables

Figure 9-4. Interactions within a node on the read path

When the replica node receives the read request, it first checks the row cache. If the
row cache contains the data, it can be returned immediately. The row cache helps
speed read performance for rows that are accessed frequently. We'll discuss the pros
and cons of row caching in Chapter 13.

If the data is not in the row cache, the replica node searches for the data in memtables
and SSTables. There is only a single memtable for a given table, so that part of the
search is straightforward. However, there are potentially many physical SSTables for a
single Cassandra table, each of which may contain a portion of the requested data.

Cassandra implements several features to optimize the SSTable search: key caching,
Bloom filters, SSTable indexes, and summary indexes.

The first step in searching SSTables on disk is to use a Bloom filter to determine
whether the requested partition does not exist in a given SSTable, which would make
it unnecessary to search that SSTable.

If the SSTable passes the Bloom filter, Cassandra checks the key cache to see if it con-
tains the offset of the partition key in the SSTable. The key cache is implemented as a
map structure in which the keys are a combination of the SSTable file descriptor and
partition key, and the values are offset locations into SSTable files. The key cache
helps to eliminate seeks within SSTable files for frequently accessed data, because the
data can be read directly.

204 | Chapter9: Writing and Reading Data



If the offset is not obtained from the key cache, Cassandra uses a two-level index
stored on disk in order to locate the offset. The first level index is the partition sum-
mary, which is used to obtain an offset for searching for the partition key within the
second level index, the partition index. The partition index is where the offset into the
SSTable for the partition key is stored.

If the offset for the partition key is found, Cassandra accesses the SSTable at the speci-
fied offset and starts reading data.

Once data has been obtained from all of the SSTables, Cassandra merges the SSTable
data and memtable data by selecting the value with the latest timestamp for each
requested column.

Finally, the merged data can be added to the row cache (if enabled) and returned to
the client or coordinator node. A digest request is handled in much the same way as a
regular read request, with the additional step that a digest is calculated on the result
data and returned instead of the data itself.

Read Repair

Here’s how read repair works: the coordinator makes a full read request from all of
the replica nodes. The coordinator node merges the data by selecting a value for each
requested column. It compares the values returned from the replicas and returns the
value that has the latest timestamp. If Cassandra finds different values stored with the
same timestamp, it will compare the values lexicographically and choose the one that
has the greater value. This case should be exceedingly rare. The merged data is the
value that is returned to the client.

Asynchronously, the coordinator identifies any replicas that return obsolete data and
issues a read-repair request to each of these replicas to update their data based on the
merged data.

The read repair may be performed either before or after the return to the client. If
you are using one of the two stronger consistency levels (QUORUM or ALL), then the
read repair happens before data is returned to the client. If the client specifies a weak
consistency level (such as ONE), then the read repair is optionally performed in the
background after returning to the client. The percentage of reads that result in back-
ground repairs for a given table is determined by the read_repair_chance and
dc_local_read_repair_chance options for the table.

Transient Replication

Companies with large Cassandra deployments have developed a technique called
transient replication to help manage infrastructure costs for very large clusters. The
feature works by adding a new type of replica known as a transient replica that only
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stores data when regular or full replicas are unavailable. When the full replicas are
available, the data is moved to them through incremental repair, whereupon it can be
deleted from transient replicas. This results in less disk storage to achieve the same
availability and consistency and also reduces CPU and I/O load on nodes in the clus-
ter. From a client perspective, the fact that you have enabled transient replication
should be transparent.

Transient replication is an experimental feature in the 4.0 release and is disabled by
default. You enable it by setting the enable_transient_replication property in the
cassandra.yaml file. Doing this enables you to configure the replication strategy for
each keyspace to specify how many of the total number of replicas will be designated
as transient replicas, for example:

CREATE KEYSPACE reservation WITH REPLICATION =
{'class': 'SimpleStrategy', 'replication_factor' : '5/2'};

The 5/2 denotes the request for five total replicas, with three full replicas and two
transient replicas. This is a common usage for a single data center using RF=3; chang-

ing the strategy to 5/2, that is, three full and two transient replicas, results in the abil-
ity to have two additional replicas without increasing the number of nodes.

You can configure transient replicas on the NetworkTopologyStrategy as well:

CREATE KEYSPACE reservation WITH REPLICATION =
{'class' : 'NetworkTopologyStrategy', 'DC1' : '3/1', 'DC2' : '3/1'};

For a two data center configuration with RF=3 per data center, changing the strategy
to 3/1 per data center means there will be a total of four full replicas, which is suffi-
cient to achieve QUORUM consistency.

Because transient replication is configured by keyspace, you can have keyspaces using
transient replication and keyspaces that do not use it in the same cluster.

To understand how Cassandra designates which replicas are full versus transient,
you’ll need to recall what you learned about Cassandra’s ring topology in Chapter 6.
Each node in the cluster is assigned a token, which represents a range of hashed parti-
tion key values that designate what partitions will be stored on that replica. Remem-
ber that as you increase the replication factor, the nodes that have the next higher
tokens (clockwise around the ring) will become replicas for a given partition as well.
When you enable transient replication, the nodes with the tokens farthest from the
original token will be the transient replica, as shown in Figure 9-5. In this way, each
node will be a full replica for some tokens and a transient replica for others.
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Figure 9-5. Transient replication and the ring

Transient Replica

Let’s see how this works on reads and writes. First, on a write, Cassandra attempts to
write the data to each full replica. When full replicas are down, transient replicas will
receive writes in order to achieve the requested consistency level. Transient replicas
are just as eligible to count toward your desired consistency level as any other node;
this is known as a cheap quorum. Later, when incremental repairs are run, full replicas
that are back online will receive the data, and the transient replicas can discard their
copies.

On reads, at least one full replica is required, but beyond that, any replicas, including
full or transient, may be used to achieve the requested consistency level.

Because transient replication changes the nature of how Cassandra nodes interact,
there are some challenges in reconciling its behavior with other features. For the 4.0
release, features including read repair, batches, lightweight transactions, and counters
cannot be used within keyspaces that have transient replication set. Secondary
indexes and materialized views are unlikely to ever be supported. Finally, remember
that since transient replication is an experimental feature, it is not yet recommended
for production use.

Range Queries, Ordering and Filtering

So far your read queries have been confined to very simple examples. Let’s take a look
at more of the options that Cassandra provides on the SELECT command, such as the
WHERE and ORDER BY clauses.
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First, let’s examine how to use the WHERE clause that Cassandra provides for reading
ranges of data within a partition, sometimes called slices.

In order to do a range query, however, it will help to have some data to work with.
Although you don’t have a lot of data yet, you can quickly get some by using cqlsh to
load some sample reservation data into your cluster. We'll look at more advanced
bulk loading options in Chapter 15.

You can access a simple .csv file in the GitHub repository for this book. The reserva-
tions.csv file contains a month’s worth of inventory for two small hotels with five
rooms each. Let’s load the data into the cluster:

cqlsh:hotel> COPY available_rooms_by_hotel_date FROM
'available_rooms.csv' WITH HEADER=true;

310 rows imported in 0.789 seconds.

If you do a quick query to read some of this data, you'll find that you have data for
two hotels: “AZ123” and “NY229”

Now let’s consider how to support the query labeled “Q4. Find an available room in a
given date range” in Chapter 5. Remember that the available_rooms_by_hotel_date
table was designed to support this query, with the primary key:

PRIMARY KEY (hotel_id, date, room_number)

This means that the hotel_1id is the partition key, while date and room_number are
clustering columns.

Here’s a CQL statement that allows you to search for hotel rooms for a specific hotel
and date range:

cqlsh:hotel> SELECT * FROM available_rooms_by hotel_date
WHERE hotel_id='AZ123' and date>'2016-01-05' and date<'2016-01-12';

hotel_1id | date

|
---------- B L e DT
AZ123 | 2016-01-06 | 101 | True
AZ123 | 2016-01-06 | 102 | True
AZ123 | 2016-01-06 | 103 | True
AZ123 | 2016-01-06 | 104 | True
AZ123 | 2016-01-06 | 105 | True

(30 rows)
Note that this query involves the partition key hotel_1id and a range of values repre-
senting the start and end of your search over the clustering key date.

If you wanted to try to find the records for room number 101 at hotel AZ123, you
might attempt a query like the following:
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cqlsh:hotel> SELECT * FROM available_rooms_by_ hotel_date
WHERE hotel_id='AZ123' and room_number=101;

InvalidRequest: code=2200 [Invalid query] message="PRIMARY KEY column
"room_number" cannot be restricted as preceding column "date" is not
restricted"

As you can see, this query results in an error, because you have attempted to restrict

the value of the second clustering key while not limiting the value of the first cluster-
ing key.

The syntax of the WHERE clause involves two rules. First, all elements of the partition
key must be identified. Second, a given clustering key may only be restricted if all pre-
vious clustering keys are restricted by equality.

These restrictions are based on how Cassandra stores data on disk, which is based on
the clustering columns and sort order specified on the CREATE TABLE command. The
conditions on the clustering column are restricted to those that allow Cassandra to
select a contiguous ordering of rows.

The exception to this rule is the ALLOW FILTERING keyword, which allows you to omit
a partition key element. For example, you can search the room status across multiple
hotels for rooms on a specific date with this query:

cqlsh:hotel> SELECT * FROM available_rooms_by hotel_date
WHERE date='2016-01-25' ALLOW FILTERING;

hotel_1id | date | room_number | is_available

---------- T s LT TP
AZ123 | 2016-01-25 | 101 | True
AZ123 | 2016-01-25 | 102 | True
AZ123 | 2016-01-25 | 103 | True
AZ123 | 2016-01-25 | 104 | True
AZ123 | 2016-01-25 | 105 | True
NY229 | 2016-01-25 | 101 | True
NY229 | 2016-01-25 | 102 | True
NY229 | 2016-01-25 | 103 | True
NY229 | 2016-01-25 | 104 | True
NY229 | 2016-01-25 | 105 | True

(10 rows)

Usage of ALLOW FILTERING is not recommended, however, as it has the potential to
result in very expensive queries. If you find yourself needing such a query, you will
want to revisit your data model to make sure you have designed tables that support
your queries.

The IN clause can be used to test equality with multiple possible values for a column.
For example, you could use the following to find inventory on two dates a week apart
with the command:

Reading | 209



cqlsh:hotel> SELECT * FROM available_rooms_by_ hotel_date
WHERE hotel_id='AZ123' AND date IN ('2016-01-05', '2016-01-12');

Note that using the IN clause to specify multiple clustering column values can result
in slower performance on queries, as the specified column values may correspond to
noncontiguous areas within the row.

Similarly, if you use the IN clause to specify multiple partitions, that would cause the
coordinator node to have to talk to a greater number of nodes to support your query.
In such a case, you might consider kicking off separate requests for the different par-
titions in parallel threads in your application so that the driver can directly contact a
replica as the coordinator for each query.

Finally, the SELECT command allows you to override the sort order which has been
specified on the columns when you created the table. For example, you could obtain
the rooms in descending order by date for any of your previous queries using the
ORDER BY syntax:

cqlsh:hotel> SELECT * FROM available_rooms_by hotel_date
WHERE hotel_id='AZ123' and date>'2016-01-05' and date<'2016-01-12'
ORDER BY date DESC;

More on the WHERE Clause

The DataStax blog post “A deep look at the CQL WHERE clause”
provides additional advice and examples on how to use the various
options available on the WHERE clause.

Paging
In early releases of Cassandra, clients had to make sure to carefully limit the amount

of data requested at a time. For a large result set, it is possible to overwhelm both
nodes and clients even to the point of running out of memory.

Thankfully, Cassandra provides a paging mechanism that allows retrieval of result
sets incrementally. A simple example of this is shown with the CQL keyword LIMIT.
For example, the following command will return no more than 10 hotels:

cqlsh> SELECT * FROM reservation.reservations_by_hotel_date LIMIT 10;

Of course, the limitation of the LIMIT keyword (pun intended) is that there’s no way
to obtain additional pages containing the additional rows beyond the requested

quantity.

The 2.0 release of Cassandra introduced a feature known as automatic paging. Auto-
matic paging allows clients to request a subset of the data that would be returned by a
query. The server breaks the result into pages that are returned as the client requests
them.
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You can view paging status in cqlsh via the PAGING command. The following output
shows a sequence of checking paging status, changing the fetch size (page size), and
disabling paging:

cqlsh> PAGING;

Query paging is currently enabled. Use PAGING OFF to disable

Page size: 100

cqlsh> PAGING 1000;

Page size: 1000

cqlsh> PAGING OFF;

Disabled Query paging.

cqlsh> PAGING ON;

Now Query paging is enabled
Now let’s see how paging works in the DataStax Java Driver. You can set a default
fetch size globally for a CqlSession instance using the basic.request.page-size
parameter, which defaults to 5000. The page size can also be set on an individual
statement, overriding the default value:

Statement statement = SimpleStatement.builder("...").build();
statement.setPageSize(2000);
The page size is not necessarily exact; the driver might return slightly more or slightly
fewer rows than requested. The driver handles automatic paging on your behalf,
allowing you to iterate over a ResultSet without requiring knowledge of the paging
mechanism. For example, consider the following code sample for iterating over a
query for hotels:

SimpleStatement reservationsByHotelDateSelect = SimpleStatement.builder(
"SELECT * FROM reservations_by_hotel_date").build();
ResultSet resultSet = cqlSession.execute(reservationsByHotelDateSelect);

for (Row row : resultSet) {
// process the row

}
What happens behind the scenes is as follows: when your application invokes the
cqlSession.execute() operation, the driver performs your query to Cassandra,
requesting the first page of results. Your application iterates over the results, as shown
in the for loop, and when the driver detects that there are no more items remaining
on the current page, it requests the next page.

It is possible that the small pause of requesting the next page would affect the perfor-
mance and user experience of your application, so the ResultSet provides additional
operations that allow more fine-grained control over paging. Here’s an example of
how you could extend your application to do some pre-fetching of rows:

for (Row row : resultSet) {

if (resultSet.getAvailableWithoutFetching() < 100 &&
IresultSet.isFullyFetched())
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resultSet.fetchMoreResults();
// process the row

}
This additional statement checks to see if there are less than 100 rows remaining on
the current page using getAvailableWithoutFetching(). If there is another page to
be retrieved, which you determine by checking isFullyFetched(), you initiate an
asynchronous call to obtain the extra rows via fetchMoreResults().

The driver also exposes the ability to access the paging state more directly so it can be
saved and reused later. This could be useful if your application is a stateless web ser-
vice that doesn’t sustain a session across multiple invocations.

You can access the paging state through the ExecutionInfo of the ResultSet, which
provides the state as an opaque array of bytes contained in a java.nio.ByteBuffer:

ByteBuffer nextPage = resultSet.getExecutionInfo().getPagingState();

You can then save this state within your application, or return it to clients. The paging
state can be converted to a string using toString(), or a byte array using array().

Note that in either string or byte array form, the state is not something you should try
to manipulate or reuse with a different statement since it is not guaranteed to have
the same format between different Cassandra versions. Doing so could result in an
exception.

To resume a query from a given paging state, you set it on the Statement:

SimpleStatement reservationsByHotelDateSelect = SimpleStatement.builder(
"SELECT * FROM reservation.reservations_by hotel_date").build();
reservationsByHotelDateSelect.setPagingState(pagingState);

Deleting

Deleting data is not the same in Cassandra as it is in a relational database. In an
RDBMS, you simply issue a delete statement that identifies the row or rows you want
to delete. In Cassandra, a delete does not actually remove the data immediately.
There’s a simple reason for this: Cassandra’s durable, eventually consistent, dis-
tributed design. If Cassandra had a traditional design for deletes, any nodes that were
down at the time of a delete would not receive the delete. Once one of these nodes
came back online, it would mistakenly think that all of the nodes that had received
the delete had actually missed a write (the data that it still has because it missed the
delete), and it would start repairing all of the other nodes. So Cassandra needs a more
sophisticated mechanism to support deletes. That mechanism is called a tombstone.

A tombstone is a special marker issued in a delete, acting as a placeholder. If any rep-
lica did not receive the delete operation, the tombstone can later be propagated to
those replicas when they are available again. The net effect of this design is that your
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data store will not immediately shrink in size following a delete. Each node keeps
track of the age of all its tombstones. Once they reach the age configured in
gc_grace_seconds (which is 10 days by default), then a compaction is run, the tomb-
stones are garbage collected, and the corresponding disk space is recovered.

Because SSTables are immutable, the data is not deleted from the SSTable. On com-
paction, tombstones are accounted for, merged data is sorted, a new index is created
over the sorted data, and the freshly merged, sorted, and indexed data is written to a
single new file. The assumption is that 10 days is plenty of time for you to bring a
failed node back online before compaction runs. If you feel comfortable doing so, you
can reduce that grace period to reclaim disk space more quickly.

You've previously used the CQL DELETE command in Chapter 4. Here’s what a simple
delete of an entire row looks like using the DataStax Java Driver:

SimpleStatement reservationByConfirmationDelete = SimpleStatement.builder(
"DELETE * FROM reservation.reservations_by_confirm
WHERE confirm_number=?")
.addPositionalvalue("RS2GOZ")
.build();

cqlSession.execute(reservationByConfirmationDelete);

You can also delete data using PreparedStatements, the QueryBuilder, and the Map-
per. Here is an example of deleting an entire row using the QueryBuilder:

import static com.datastax.oss.driver.api.querybuilder.QueryBuilder.*;

SimpleStatement reservationByConfirmationDelete = deleteFrom("reservations",
"reservations_by_confirmation")
.whereColumn("confirm_number").isEqualTo("RS2G0Z")
.build();

cqlSession.execute(reservationByConfirmationDelete);

Because a delete is a form of write, the consistency levels available for deletes are the
same as those listed for writes.

Cassandra allows you to delete data at multiple levels of granularity. You can:

o Delete items from a collection (set, list, or map), as you learned in Chapter 4

o Delete nonprimary key columns by identifying them by name in your DELETE
query
o Delete entire rows as shown above

o Delete ranges of rows using the same WHERE clauses as with the SELECT command

o Delete an entire partition
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Because of how Cassandra tracks deletions, each of these operations will result in a
single tombstone. The more data you are able to delete in a single command, the
fewer tombstones you will have. If your application generates a large number of
tombstones, Cassandra’s read performance can begin to be impacted by having to tra-
verse over these tombstones as it reads SSTable files. You'll learn in Chapter 11 how to
detect this issue, but it’s also wise to try to avoid it to begin with.

Here are a few techniques to help minimize the impact of tombstones on your clus-
ter:

« Avoid writing NULL values into your tables, as these are interpreted as deletes.
This can happen in cases where an unset attribute on a user interface or API is
interpreted as a NULL value as it moves down through your application stack.
While this is relatively simple to police in your own application code, mapping
frameworks such as Spring Data Cassandra or the DataStax Java Driver’s Mapper
can tend to abstract this behavior, which can lead to the generation of many
tombstones without your knowledge. Make sure you investigate and properly
configure the null-handling behavior you expect when using frameworks that
abstract CQL queries.

o Delete data at the largest granularity you can, ideally entire partitions at once.
This will minimize the number of tombstones you create. Alain Rodriguez’s blog
post “About Tombstones and Deletes in Cassandra” explains this strategy in more

depth.

o Exercise care when updating collections. If possible, avoid replacing the entire
contents of a list, set, or map, as this will generate tombstones for all of the previ-
ous content. Instead, update only the elements you need to modify.

o Use Cassandras time-to-live (TTL) feature when inserting data, which allows
Cassandra to expire data automatically on your behalf.

o For tables that implement a time-series pattern, consider using the TimeWindow
CompactionStrategy, which allows Cassandra to drop entire SSTable files at
once. We'll discuss this strategy further in Chapter 13.

Summary

In this chapter, you saw how to read, write, and delete data using both cqlsh and cli-
ent drivers. You also took a peek behind the scenes to learn how Cassandra imple-
ments these operations, which should help you to make more informed decisions as
you design, implement, deploy, and maintain applications using Cassandra.
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CHAPTER 10
Configuring and Deploying Cassandra

In this chapter, you’ll build your first cluster and look at the available options for con-
figuring Cassandra nodes, including aspects of Cassandra that affect node behavior in
a cluster, such as partitioning, snitches, and replication. We will also share a few
pieces of advice as you work toward deploying Cassandra in production. We'll discuss
options to consider in planning deployments and deploying Cassandra in various
cloud environments.

Cassandra Cluster Manager

Out of the box, Cassandra works with no configuration at all; you can simply down-
load, decompress, and execute the program to start the server with its default config-
uration. However, one of the things that make Cassandra such a powerful technology
is its emphasis on configurability and customization. At the same time, the number of
options may seem confusing at first.

In order to get practice in building and configuring a cluster, let’s take advantage of a
tool called the Cassandra Cluster Manager or ccm. Built by Sylvain Lebresne and sev-
eral other contributors, this tool is a set of Python scripts that allow you to run a
multi-node cluster on a single machine. This allows you to quickly configure a cluster
without having to provision additional hardware. It’s also a great way to introduce
some of the most commonly configured options, as discussed in the Cassandra docu-
mentation.

Creating Cassandra Clusters for Testing

It’s often convenient when developing applications with Cassandra
to use real clusters for unit and integration testing. Docker and ccm
are both great options for creating small test clusters that you can
quickly build and tear down for use in your tests.
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A quick way to get started with ccm is to use the Python installer pip in a terminal
window:

$ pip install ccm

Alternatively, a Homebrew package is available for macOS users: brew install ccm.

Once you've installed ccm, it should be on the system path. To get a list of supported
commands, you can type ccm or ccm -help. If you need more information on the
options for a specific cluster command, type ccm <command> -h. You'll use several of
these commands in the following sections as you create and configure a cluster. You
can also invoke the scripts directly from automated test suites.

The source is available in this GitHub repository. You can dig into the Python script
files to learn more about what ccm is doing.

Creating a Cluster

The cassandra.yaml file is the primary configuration file for a Cassandra node, and
where you specify the configuration values that define a cluster. You can find this file
in the conf directory under your Cassandra installation.

The key values in configuring a cluster are the cluster name, the partitioner, the
snitch, and the seed nodes. The cluster name, partitioner, and snitch must be the
same in all of the nodes participating in the cluster. The seed nodes are not strictly
required to be exactly the same for every node across the cluster, but it is a good idea
to have a common set of seeds per data center; we’ll discuss configuration best practi-
ces momentarily.

Cassandra clusters are given names to prevent machines in one cluster from joining
another cluster that you don’t want them to be a part of. The name of the default clus-
ter in the cassandra.yaml file is Test Cluster. You can change the name of the cluster
by updating the cluster_name property—just make sure that you have done this on
all nodes that you want to participate in this cluster.

Changing the Cluster Name

If you have written data to an existing Cassandra cluster and then
change the cluster name, Cassandra will warn you with a cluster
name mismatch error as it tries to read the datafiles on startup, and
then it will shut down.

Let’s try creating a cluster using ccm for use with the Reservation Service we've dis-
cussed in previous chapters (some of the output has been reduced for brevity):
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$ ccm create -v 4.0.0 -n 3 reservation_cluster --vnodes

Current cluster is now: reservation_cluster

This command creates a cluster based on the version of Cassandra you select—in this
case, 4.0.0. The cluster is named my_cluster and has three nodes. You must specify
explicitly when you want to use virtual nodes, because ccm defaults to creating single-
token nodes. ccm designates your cluster as the current cluster that will be used for
subsequent commands. You'll notice that it downloads the source for the version
requested to run and compiles it. This is because it needs to make minor modifica-
tions to the Cassandra source in order to support running multiple nodes on a single
machine. You could also have used the copy of the source downloaded in Chapter 3.
If youd like to investigate additional options for creating a cluster, run the command
ccm create -h.

Running ccm on mac0S

ccm uses loopback addresses for each node in a cluster according to
the pattern 127.0.0.1, 127.0.0.2, and so on. If you're using ccm to
create clusters on macOS, you'll need to manually create loopback
addresses 127.0.0.2 and greater. See the ccm README if you need
instructions for creating these addresses.

Once you've created the cluster, you'll see it is the only cluster in your list of clusters
(and marked as the currently selected cluster with an asterisk), and you can learn
about its status:

$ ccm list
*reservation_cluster

$ ccm status

Cluster: 'reservation_cluster'
nodel: DOWN (Not initialized)
node3: DOWN (Not initialized)
node2: DOWN (Not initialized)

At this point, none of the nodes have been initialized. Start your cluster and then
check the status again:

$ ccm start

$ ccm status

Cluster: 'reservation_cluster'
nodel: UP

node3: UP

node2: UP
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This is the equivalent of starting each individual node using the bin/cassandra script.
To dig deeper on the status of an individual node, enter the following command:

$ ccm nodel status

Datacenter:

datacenter1

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
Tokens Owns (effective) Host ID

UN
UN
UN

Address Load

127.0.0.1 115.13 KiB 256 67.5%
127.0.0.2 115.14 KiB 256 63.3%
127.0.0.3 115.13 KiB 256 69.2%

9019859%a-...
5650bfa0-...
158a78c2-...

Rack

rack1
racki
rack1

This is equivalent to running the command nodetool status on the individual
node. The output shows that all of the nodes are up and reporting normal status (UN
means “up normal”). Each of the nodes has 256 tokens and a very small amount of
metadata, since you haven't inserted any data yet. (We've shortened the Host ID
somewhat for brevity.)

You run the nodetool ring command in order to get a list of the tokens owned by
each node. To do this in ccm, enter the command:

$c

Dat

The command requires us to specify a node.

cm nodel ring
acenter: datacenteril
ress Rack
0.0.1 rack1
0.0.2 racki
.0.0.2 racki
0.0.3 racki
0.0.2 racki

Status State

Up
Up
Up
Up
Up

Normal
Normal
Normal
Normal
Normal

Token
9171899284504323785
-9181802192617819638
-9119747148344833344
-9114111430148268761
-9093245859094984745
-9093095684198819851

This doesn’t affect the output; it just
indicates what node nodetool is connecting to in order to get the ring information.
As you can see, the tokens are allocated randomly across the three nodes. (As before,
we've abbreviated the output and omitted the Owns and Load columns for brevity.)

A Closer Look at Cluster Configuration

It’s quite interesting to take a look under the hood to see what configuration changes
ccm makes in order to get a cluster running on your local machine. By default, ccm
stores metadata and configuration files for your clusters in a directory under your
home directory called .ccm; it also uses this directory to store the source files for ver-

sions of Cassandra you have run. Take a look in this directory to see what you can
find there:
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$ cd ~/.cem; 1s
CURRENT reservation_cluster repository

The repository directory contains the source that ccm downloaded. Diving deeper into
the my_cluster directory, you’'ll see a directory for each node:

$ cd reservation_cluster; 1s
cluster.conf nodel node2 node3

The cluster.conf file contains a list of options selected when creating the cluster. To see
the configuration options that are different between nodes, try using the diff com-
mand to compare the contents of the directories. For example:

$ diff nodel/conf/ node2/conf/

The output highlights the differences in the configuration files, including the directo-
ries used for storage of data, commit logs, and output logs, the addresses used for net-
work communications, and the JMX port exposed for remote management. We'll
examine these settings in more detail throughout the rest of the chapter.

Adding Nodes to a Cluster

Now that you understand what goes into configuring each node of a Cassandra clus-
ter, youre ready to learn how to add nodes. As we've already discussed, to add a new
node manually, you need to configure the cassandra.yaml file for the new node to set
the seed nodes, partitioner, snitch, and network ports. If you've elected to create
single-token nodes, you’ll also need to calculate the token range for the new node and
make adjustments to the ranges of other nodes.

If youre using ccm, the process of adding a new node is quite simple. Run the follow-
ing command:

$ ccm add noded4 -i 127.0.0.4 -j 7400

This creates a new node, node4, with another loopback address and JMX port set to
7400. To see additional options for this command, you can type ccm add -h. Now
that you've added a node, check the status of your cluster:

$ ccm status
Cluster: 'reservation_cluster'

node2: UP

node4: DOWN (Not initialized)
The new node has been added but has not been started yet. If you run the nodetool
ring command again, you'll see that no changes have been made to the tokens. Now
you're ready to start the new node by typing ccm node4 start (after double-checking
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that the additional loopback address is enabled). If you run the nodetool ring com-
mand once more, you'll see output similar to the following:

Datacenter: datacenterl

Address Rack Status State ... Token
9218701579919475223

127.0.0.1 rack1l Up Normal ... -9211073930147845649

127.0.0.4 rack1l Up Normal ... -9190530381068170163

If you compare this with the previous output, you'll notice a couple of things. First,
the tokens have been reallocated across all of the nodes, including the new node. Sec-
ond, the token values have changed, representing smaller ranges. In order to give
your new node its 256 tokens (num_tokens), there are now 1,024 total tokens in the
cluster.

You can observe what it looks like to other nodes when node4 starts up by examining
the log file. On a standalone node, you might look at the system.log file in /var/log/
cassandra (or $CASSANDRA_HOME/logs), depending on your configuration. ccm
provides a handy command to examine the log files from any node. Look at the log
for nodel using ccm nodel showlog command. This brings up a view similar to the
standard unix more command that allows you to page through or search the log file
contents. Searching for gossip-related statements in the log file near the end (for
example, by typing /127.0.0.4), you'll find something like this:

INFO [GossipStage:1] 2019-11-27 15:40:51,176 Gossiper.java:1222 -
Node 127.0.0.4:7000 is now part of the cluster

INFO [GossipStage:1] 2019-11-27 15:40:51,203 TokenMetadata.java:490 -
Updating topology for 127.0.0.4:7000

INFO [GossipStage:1] 2019-11-27 15:40:51,206 StorageService.java:2524 -
Node 127.0.0.4:7000 state jump to NORMAL

INFO [GossipStage:1] 2019-11-27 15:40:51,213 Gossiper.java:1180 -
InetAddress 127.0.0.4:7000 is now UP

These statements show nodel successfully gossiping with node4, and that node4 is
considered up and part of the cluster. At this point, the bootstrapping process begins
to allocate tokens to node4 and stream any data associated with those tokens to node4.

Dynamic Ring Participation

Nodes in a Cassandra cluster can be brought down and back up without disrupting
the rest of the cluster (assuming a reasonable replication factor and consistency level).
Say that you've started a two-node cluster, as described in “Creating a Cluster” on
page 216. You can cause an error to occur that will take down one of the nodes, and
then make sure that the rest of the cluster is still OK.

220 | Chapter 10: Configuring and Deploying Cassandra



You can simulate this situation by taking one of the nodes down using the ccm stop
command. You can run the ccm status to verify the node is down, and then check a
log file as you did earlier via the ccm showlog command. If you stop node4 and exam-
ine the log file for another node, you'll see something like the following:
INFO [GossipStage:1] 2019-11-27 15:44:09,564 Gossiper.java:1198 -
InetAddress 127.0.0.4:7000 is now DOWN
Now bring node4 back up and recheck the logs at another node. Sure enough, Cas-
sandra has automatically detected that the other participant has returned to the clus-
ter and is again open for business:
INFO [GossipStage:1] 2019-11-27 15:45:34,579 Gossiper.java:1220 -
Node 127.0.0.4:7000 has restarted, now UP
The state jump to normal for node4 indicates that it’s part of the cluster again. As a
final check, run the status command again:

$ ccm status
Cluster: 'reservation_cluster'

As you see, the node is back up.

Node Configuration

There are many other properties that can be set in the cassandra.yaml file. We'll look
at a few highlights related to cluster formation, networking, and disk usage in this
chapter, and save some of the others for treatment in Chapter 13 and Chapter 14.

A Guided Tour of the cassandra.yaml File

The Cassandra documentation provides a helpful guide to config-
uring the various settings in the cassandra.yaml file.

Seed Nodes

A new node in a cluster needs what’s called a seed node. A seed node is used as a con-
tact point for other nodes, so Cassandra can learn the topology of the cluster—that s,
what hosts have what ranges. For example, if node A acts as a seed for node B, when
node B comes online, it will use node A as a reference point from which to get data.
This process is known as bootstrapping, or sometimes auto-bootstrapping because it is
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an operation that Cassandra performs automatically. Seed nodes do not auto-
bootstrap because it is assumed that they will be the first nodes in the cluster.

By default, the cassandra.yaml file will have only a single seed entry set to the local
host:

- seeds: "127.0.0.1"

To add more seed nodes to a cluster, just add another seed element. You can set mul-
tiple servers to be seeds just by indicating the IP address or hostname of the node. For
an example, if you look in the cassandra.yaml file for node3, you’ll find the following:

- seeds: 127.0.0.1, 127.0.0.2, 127.0.0.3

In a production cluster, these would be the IP addresses of other hosts rather than
loopback addresses. To ensure high availability of Cassandra’s bootstrapping process,
it is considered a best practice to have at least two seed nodes in each data center. This
increases the likelihood of having at least one seed node available should one of the
local seed nodes go down during a network partition between data centers.

As you may have noticed if you looked in the cassandra.yaml file, the list of seeds is
actually part of a larger definition of the seed provider. The org.apache.cassan
dra.locator.SeedProvider interface specifies the contract that must be imple-
mented. Cassandra provides the SimpleSeedProvider as the default implementation,
which loads the IP addresses of the seed nodes from the cassandra.yaml file. If you
use a service registry as part of your infrastructure, you could register seed nodes in
the registry and write a custom provider to consult that registry. This is an approach
commonly used in Kubernetes operators, as we'll discuss in “Cassandra Kubernetes
Operators” on page 301.

Snitches

Snitches gather some information about your network topology so that Cassandra
can efficiently route requests. The snitch will figure out where nodes are in relation to
other nodes. You configure the endpoint snitch implementation to use by updating
the endpoint_snitch property in the cassandra.yamil file.

You can configure any snitch you prefer on a new cluster, but once
you've inserted data into a cluster, changing the snitch may involve
some additional steps, as described in the DataStax documentation.

SimpleSnitch
By default, Cassandra uses org.apache.cassandra.locator.SimpleSnitch. This
snitch is not rack aware (a term we'll explain in just a minute), which makes it
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unsuitable for multiple data center deployments. If you choose to use this snitch,
you should also use the SimpleStrategy replication strategy for your keyspaces.

PropertyFileSnitch
The org.apache.cassandra.locator.PropertyFileSnitch is a rack-aware
snitch, meaning that it uses information that you provide about the topology of
your cluster as key-value properties in the cassandra-topology.properties configu-
ration file. Here’s an example configuration:

# Cassandra Node IP=Data Center:Rack
175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

# default for unknown nodes
default=DC1:RAC1

Notice that there there is a single data center (DC1) with two racks (RAC1 and
RAC2). Any nodes that aren’t identified here will be assumed to be in the default
data center and rack (DC1, RAC1). These are the same rack and data center names
that you will use in configuring the NetworkTopologyStrategy settings per data
center for your keyspace replication strategies.

Update the values in this file to record each node in your cluster to specify the IP
address of each node in your cluster and its location by data center and rack. The
manual configuration required in using the PropertyFileSnitch trades away a
little flexibility and ease of maintenance in order to give you more control and
better runtime performance, as Cassandra doesn’t have to figure out where nodes
are. Instead, you just tell it where they are.

GossipingPropertyFileSnitch
The org.apache.cassandra.locator.GossipingPropertyFileSnitch is
another rack-aware snitch. The data exchanges information about its own rack
and data center location with other nodes via gossip. The rack and data center
locations are defined in the cassandra-rackdc.properties file. The GossipingPro
pertyFileSnitch also uses the cassandra-topology.properties file, if present. This
is simpler to configure since you only have to configure the data center and rack
on each node, for example:

dc=DC1
rack=RAC1
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The GossipingPropertyFileSnitch is the most commonly used snitch for mul-
tiple data center clusters in private clouds, as well as multicloud clusters.

RackInferringSnitch

The org.apache.cassandra.locator.RackInferringSnitch assumes that nodes
in the cluster are laid out in a consistent network scheme. It operates by simply
comparing different octets in the IP addresses of each node. If two hosts have the
same value in the second octet of their IP addresses, then they are determined to
be in the same data center. If two hosts have the same value in the third octet of
their IP addresses, then they are determined to be in the same rack. This means
that Cassandra has to guess based on an assumption of how your servers are
located in different VLANSs or subnets.

DynamicEndpointSnitch

As discussed in Chapter 6, Cassandra wraps your selected snitch with
org.apache.cassandra.locator.DynamicEndpointSnitch to select the highest
performing nodes for queries. The dynamic_snitch_badness_threshold prop-
erty defines a threshold for changing the preferred node. The default value of 0.1
means that the preferred node must perform 10% worse than the fastest node in
order to lose its status. The dynamic snitch updates this status according to the
dynamic_snitch_update_interval_in_ms property, and resets its calculations at
the duration specified by the dynamic_snitch_reset_interval_in_ms property.
The reset interval should be a much longer interval than the update interval
because it is a more expensive operation, but it does allow a node to regain its
preferred status without having to demonstrate performance superior to the bad-
ness threshold.

Cassandra also comes with several snitches designed for use in cloud deployments,
such as Ec2Snitch, Ec2MultiRegionSnitch for deployments in Amazon Web Serv-
ices (AWS), GoogleCloudSnitch for Google Cloud Platform (GCP), and AlibabaS
nitch for Alibaba Cloud. The CloudstackSnitch is designed for use in public or
private cloud deployments based on the Apache Cloudstack project. We'll discuss sev-
eral of these snitches in “Cloud Deployment” on page 237.

Partitioners

Now we'll get into some of the configuration options that are changed less frequently,
starting with the partitioner. You can’t change the partitioner once you've inserted
data into a cluster, so take care before deviating from the default!

The purpose of the partitioner is to allow you to specify how partition keys are map-
ped to token values, which determines how data will be distributed across your
nodes. You set the partitioner by updating the value of the partitioner property in the
cassandra.yaml file.
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While it is possible to change the partitioner on an existing cluster,
it's a complex procedure, and the recommended approach is to
migrate data to a new cluster with your preferred partitioner using
techniques we discuss in Chapter 15.

Murmur3Partitioner
The default partitioner is org.apache.cassandra.dht.Murmur3Partitioner,
which uses the murmur hash algorithm to generate tokens. This has the advan-
tage of spreading partition keys evenly across your cluster, because the distribu-
tion is random. However, it does inefficient range queries, because keys within a
specified range might be placed in a variety of disparate locations in the ring, and
key range queries will return data in an essentially random order.

New clusters should always use the Murmur3Partitioner. However, Cassandra
provides the additional partitioners listed below for backward compatibility.

RandomPartitioner
The org.apache.cassandra.dht.RandomPartitioner was Cassandra’s default in
Cassandra 1.1 and earlier. It uses a BigIntegerToken with an MD5 cryptographic
hash applied to it to determine where to place the keys on the node ring.
Although the RandomPartitioner and Murmur3Partitioner are both based on
random hash functions, the cryptographic hash used by RandomPartitioner is

considerably slower, which is why the Murmur3Partitioner replaced it as the
default.

OrderPreservingPartitioner
The org.apache.cassandra.dht.OrderPreservingPartitioner represents
tokens as UTF-8 strings calculated from the partition key. Rows are therefore
stored by key order, aligning the physical structure of the data with your sort
order. Configuring your column family to use order-preserving partitioning
(OPP) allows you to perform range slices.

Because of the ordering aspect, users are sometimes attracted to the OrderPreser
vingPartitioner. However, it isn't actually more efficient for range queries than
random partitioning. More importantly, it has the potential to create an unbal-
anced cluster with some nodes having more data. These hotspots create an addi-
tional operational burden—you’ll need to manually rebalance nodes using the
nodetool move operation.

ByteOrderedPartitioner
The ByteOrderedPartitioner is an additional order-preserving partitioner that
treats the data as raw bytes, instead of converting them to strings the way the
order-preserving partitioner and collating order-preserving partitioner do. The
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ByteOrderedPartitioner represents a performance improvement over the
OrderPreservingPartitioner.

Avoiding Partition Hotspots

Although Murmur3Partitioner selects tokens randomly, it can still
be susceptible to hotspots; however, the problem is significantly
reduced compared to the order-preserving partitioners. In order to
minimize hotspots, additional knowledge of the topology is
required. An improvement to token selection was added in 3.0 to
improve the allocation of vnodes. Configuring the allo
cate_tokens_for_local_replication_factor property in cassan-
dra.yaml with a replication factor for the local data center instructs
the partitioner to optimize token selection based on the specified
number of replicas. This value may vary according to the replica-
tion factor assigned to the data center for each keyspace, but is
most often 3. This option is only available for the Murmur3Parti
tioner.

Tokens and Virtual Nodes

By default, Cassandra is configured to use virtual nodes (vnodes). The number of
tokens that a given node will service is set by the num_tokens property. Generally this
should be left at the default value, but may be increased to allocate more tokens to
more capable machines, or decreased to allocate fewer tokens to less capable
machines.

How Many vnodes?

Many experienced Cassandra operators have recommended that
the default num_tokens be changed from the historic default of 256
to a lower value such as 16 or even 8. They argue that having fewer
tokens per node provides adequate balance between token ranges,
while requiring significantly less bandwidth to coordinate changes.
The Jira request CASSANDRA-13701 represents a potential change
to this default in a future release.

To disable vnodes and configure the more traditional token ranges, you'll first need to
set num_tokens to 1, or you may also comment out the property entirely. Then you'll
need to calculate tokens for each node in the cluster and configure the inti

tial_token property on each node to indicate the range of tokens that it will own.
There is a handy calculator available at http://www.geroba.com/cassandra/cassandra-
token-calculator that you can use to calculate ranges based on the number of nodes in
your cluster and the partitioner in use.
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In general, we recommend using vnodes, due to the effort required to recalculate
token assignments and manually reconfigure the tokens to rebalance the cluster when
adding or deleting single-token nodes.

Network Interfaces

There are several properties in the cassandra.yaml file that relate to the networking of
the node. Cassandra uses separate ports and protocols for client-to-node and inter-
node communications.

listen_address
The listen_address controls which IP address Cassandra listens on for incom-
ing connections from other nodes. You can see how this is configured in your
ccm cluster, as follows:

$ cd ~/.ccm

$ find . -name cassandra.yaml -exec grep -H 'listen_address' {} \;
./nodel/conf/cassandra.yaml:listen_address: 127.0.0.1
./node2/conf/cassandra.yaml:listen_address: 127.0.0.2
./node3/conf/cassandra.yaml:listen_address: 127.0.0.3

If youd prefer to bind via an interface name, you can use the listen_interface
property instead of 1isten_address. For example, listen_interface=eth0. You
may not set both of these properties. See the instructions in the cassandra.yaml
file for more details.

broadcast_address
The broadcast_address is the IP address advertised to other nodes. If not set, it
defaults to the listen_address. This is typically overridden in multiple data cen-
ter configurations where there is a need to communicate within a data center
using private IP addresses, but across data centers using public IP addresses. Set
the listen_on_broadcast_address property to true to enable the node to com-
municate on both interfaces.

storage_port
The storage_port property designates the port used for inter-node communica-
tions, typically 7000. If you will be using Cassandra in a network environment
that traverses public networks, or multiple regions in a cloud deployment, you
should configure the ss1_storage_port (typically 7001). Configuring the secure
port also requires configuring inter-node encryption options, which we’ll discuss
in Chapter 14.

native_transport_port
The term native transport refers to the transport that clients use to communicate
with Cassandra nodes via CQL. The native transport defaults to port 9042, as
specified by the native_transport_port property.
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The rpc_keepalive property defaults to true, which means that Cassandra will
allow clients to hold connections open across multiple requests. Other properties
are available to limit the threads, connections, and frame size, which we’ll exam-
ine in Chapter 13.

Deprecation of Thrift RPC Properties

Historically, Cassandra supported two different client interfaces:
the original Thrift API, also known as the Remote Procedure Call
(RPC) interface, and the CQL native transport first added in 0.8.
For releases through 2.2, both interfaces were supported and
enabled by default. Starting with the 3.0 release, Thrift was disabled
by default and has been removed entirely as of the 4.0 release. If
you're using an earlier version of Cassandra, know that properties
prefixed with rpc generally refer to the Thrift interface.

Data Storage

Cassandra allows you to configure how and where its various datafiles are stored on
disk, including datafiles, commit logs, hints, and saved caches. The default is the data
directory under your Cassandra installation ($CASSANDRA_HOME/data or %CAS-
SANDRA_HOME%/data).

You'll remember from Chapter 6 that the commit log is used as short-term storage for
incoming writes. As Cassandra receives updates, every write value is written immedi-
ately to the commit log in the form of raw sequential file appends. If you shut down
the database or it crashes unexpectedly, the commit log can ensure that data is not
lost. That’s because the next time you start the node, the commit log gets replayed. In
fact, that’s the only time the commit log is read; clients never read from it. Commit
logs are stored in the location specified by the commitlog_directory property.

The datafile represents the Sorted String Tables (SSTables). Unlike the commit log,
data is written to this file asynchronously. The SSTables are periodically merged dur-
ing major compactions to free up space. To do this, Cassandra will merge keys, com-
bine columns, and delete expired tombstones.

Datafiles are stored in the location specified by the data_file_directories property.
You can specify multiple values if you wish, and Cassandra will spread the datafiles
evenly across them. This is how Cassandra supports a “just a bunch of disks” (JBOD)
deployment, where each directory represents a different disk mount point. You can
read about the pros and cons of JBOD configuration in Anthony Grasso’s blog post.

Other configuration options are available to override the locations of key and row
caches, and change data capture logs, which are discussed in Chapter 9 and Chap-
ter 15, respectively.
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Storage File Locations on Windows

You don't need to update the default storage file locations for Win-
dows, because Windows will automatically adjust the path separa-
tor and place them under C:\. Of course, in a real environment, it’s
a good idea to specify them separately, as indicated.

For testing, you might not see a need to change these locations. However, in produc-
tion environments using spinning disks, it's recommended that you store the datafiles
and the commit logs on separate disks for maximum performance and availability.

Cassandra is robust enough to handle loss of one or more disks without an entire
node going down, but gives you several options to specify the desired behavior of
nodes on disk failure. The behavior on disk failure impacting datafiles is specified by
the disk_failure_policy property, while failure response for commit logs is speci-
fied by commit_failure_policy. The default behavior stop is to disable client inter-
faces while remaining alive for inspection via JMX. Other options include die, which
stops the node entirely (JVM exit), and ignore, which means that filesystem errors
are logged and ignored. Use of ignore is not recommended. The best_effort option
is available for datafiles, allowing operations on SSTables stored on disks that are still
available.

Startup and JVM Settings

So far, this chapter has focused on settings in the cassandra.yaml file, but there are
other configuration files you should examine as well. Cassandra’s startup scripts
embody a lot of hard-won logic to optimize configuration of the various options for
your chosen JVM (recall the note on “Required Java Version” from Chapter 3).

The key file to look at is conf/jvm.options (or conf/cassandra.env.ps1 PowerShell script
on Windows). This file contains settings to configure the JVM version (if multiple
versions are available on your system), heap size, and other JVM options. Most of
these options you’ll rarely need to change from their default settings, with the possi-
ble exception of the JMX settings. The environment script allows you to set the JMX
port and configure security settings for remote JMX access. We'll examine these set-
tings in more detail in Chapter 13.

Cassandras logging configuration is found in the conf/logback.xml file. This file
includes settings such as the log level, message formatting, and log file settings,
including locations, maximum sizes, and rotation. Cassandra uses the Logback log-
ging framework, which you can learn more about at http://logback.qos.ch. The logging
implementation was changed from Log4j to Logback in the 2.1 release.

We'll examine logging and JMX configuration in more detail in Chapter 11, and JVM
memory configuration in Chapter 13.
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Creating a Cluster in Docker

We discussed how to create a single Cassandra node in a Docker container in Chap-
ter 3. It’s also simple to create a small cluster on your local machine from multiple
Docker containers. Let’s say you want to create a cluster that runs on its own network
but exposes the standard CQL port for application access. First, you’ll need to create a
Docker network, which could be as simple as:

$ docker network create my-network

Then you can create Cassandra nodes attached to that network, using the CASSAN
DRA_SEEDS environment variable to specify a seed node for nodes after the first.

$ docker run --name nodel --network my-network -p 9042:9042 -d cassandra
$ docker run --name node2 -d --network my-network -p 9042:9042 -d

-e CASSANDRA_SEEDS=nodel cassandra
$ docker run --name node3 -d --network my-network -p 9042:9042 -d

-e CASSANDRA_SEEDS=nodel,node2 cassandra

There are additional environment variables you can use to override configuration set-
tings, including the listen and broadcast addresses, the cluster name, the number of
vnodes (num_tokens), and the snitch. If you set CASSANDRA_ENDPOINT_SNITCH=Gossi
pingPropertyFileSnitch, you may also set the data center and rack via the environ-
ment variables CASSANDRA_DC and CASSANDRA_RACK, respectively.

Alternatively, you could override the entire cassandra.yaml file with a file on your
host:

$ docker run <other options> cassandra
-Dcassandra.config=/path/to/cassandra.yaml

When running Cassandra in Docker, you’ll want to remember that storage for Docker
containers is ephemeral by default. If you delete a container, its data will be lost as
well. If you desire to maintain your data beyond the container life cycle, you can
mount a directory on your host as the Cassandra data directory in the image:

Sdocker run <other options> -v /path/to/datadir:/var/lib/cassandra cassandra

You can find additional options for running the Cassandra Docker image on Docker
Hub.

Planning a Cluster Deployment

Now that you've learned some of the basics of configuring nodes and forming a small
cluster, let's move toward configuring more complex deployments.

A successful deployment of Cassandra starts with good planning. You’ll want to con-
sider the topology of the cluster in data centers and racks, the amount of data that the
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cluster will hold, the network environment in which the cluster will be deployed, and
the computing resources (whether physical or virtual) on which the instances will
run. This section will consider each of these factors in turn.

Cluster Topology and Replication Strategies

The first thing to consider is the topology of the cluster. This includes factors such as
how many data centers the cluster will span, and the location and ownership of these
clusters. Many Cassandra deployments span multiple data centers in order to maxi-
mize data locality, comply with data protection regulations such as the European
Union’s General Data Protection Regulation (GDPR), or isolate workloads. Some of
the common variations include:

o Clusters that span one or more private data centers

o Clusters that span one or more data centers in a public cloud provider, such as
Amazon Web Services, Google Cloud Platform, Microsoft Azure, Alibaba Cloud,
and others.

o Hybrid cloud clusters that span both public cloud and private data centers. These
are commonly used for deployments that run core workloads on private infra-
structure but use public clouds to add capacity during seasons of peak usage.

o Multicloud or inter-cloud clusters that span multiple public cloud providers.
These deployments are frequently used to locate data close to customers in geo-
graphic areas unique to a particular cloud provider region, or close to services
that are provided by a specific public cloud.

In addition to these options, it's a common practice to use additional data centers in a
Cassandra cluster which are separated logically (if not physically) in order to isolate
particular workloads, such as analytic or search integrations. You’ll see some of these
configurations in Chapter 15.

The cluster topology dictates how you configure the replication strategy for the key-
spaces the cluster will contain. The choice of replication strategy determines which
nodes are responsible for which key ranges. The first replica will always be the node
that claims the range in which the token falls, but the remainder of the replicas are
placed according to your replication strategy and cluster topology. Let’s examine the
implication of the two commonly used replication strategies you learned in Chap-
ter 6, the SimpleStrategy and NetworkTopologyStrategy.

First, the SimpleStrategy is designed to place replicas in a single data center, in a
manner that is not aware of their placement on a data center rack. This is shown in
Figure 10-1.
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Data Center 1 Data Center 2
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Rack 1 Rack 2 Rack 1 Rack 2
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Node 2b Node 1b Node 2b

Node 2c Node 1¢c Node 2¢
Node 1d Node 2d Node 1d Node 2d

Figure 10-1. The SimpleStrategy places replicas in a single data center, without respect
to topology

What’s happening here is that the next N nodes on the ring are chosen to hold repli-
cas, and the strategy has no notion of data centers. A second data center is shown in
the diagram to highlight the fact that the strategy is unaware of it.

Now let’s say you want to spread replicas across multiple data centers in case one of
the centers suffers some kind of catastrophic failure or network outage. The Network
TopologyStrategy allows you to request that some replicas be placed in DC1, and
some in DC2. Within each data center, the NetworkTopologyStrategy distributes
replicas on distinct racks, because nodes in the same rack (or similar physical group-
ing) often fail at the same time due to power, cooling, or network issues.

The NetworkTopologyStrategy distributes the replicas as follows: the first replica is
placed according to the selected partitioner. Subsequent replicas are placed by tra-
versing the nodes in the ring, skipping nodes in the same rack until a node in another
rack is found. The process repeats for additional replicas, placing them on separate
racks. Once a replica has been placed in each rack, the skipped nodes are used to
place replicas until the replication factor has been met.

The NetworkTopologyStrategy allows you to specify a replication factor for each
data center. Thus, the total number of replicas that will be stored is equal to the sum
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of the replication factors for each data center. The results of the NetworkTopology
Strategy are depicted in Figure 10-2.

Data Center 1 Data Center 2

4 N\ 'd N\ 4 \ 4 N\

Rack 1 Rack 2 Rack 1 Rack 2

Node 1a Node 2a Node 1a

Node 2a

Node 1b Node 2b Node 1b Node 2b
Node 1d Node 2d Node 1d Node 2d

Figure 10-2. The NetworkTopologyStrategy places replicas in multiple data centers
according to the specified replication factor per data center

To take advantage of additional data centers, you’ll need to update the replication
strategy for the keyspaces in your cluster accordingly. For example, you might issue
an ALTER KEYSPACE command to change the replication strategy for the reservation
keyspace used by the Reservation Service:

cqlsh> ALTER KEYSPACE reservation
WITH REPLICATION = {'class' : 'NetworkTopologyStrategy',
'DC1' ¢ '3', 'DC2' : '3'};

Changing the Cluster Topology

While planning the cluster topology and replication strategy is an
important design task, youre not locked into a specific topology
forever. When you take actions to add or remove data centers or
change replication factors within a data center, these are mainte-
nance operations that will require tasks that include running
repairs on affected nodes. You’ll learn about nodetool commands
that help perform tasks such as repatir and cleanup in Chapter 12.
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Sizing Your Cluster

To properly size your cluster, you'll want to consider the amount of data that your
cluster will need to store, as well as the expected read and write load and latency
goals, which we'll address in Chapter 13. You will, of course, be able to add and
remove nodes from your cluster to adjust its capacity over time, but calculating the
initial and planned size over time will help you better anticipate costs and make
sound decisions as you plan your cluster configuration.

To calculate the required size of the cluster, you’ll first need to determine the storage
size of each of the supported tables using the formulas introduced in Chapter 5. This
calculation is based on the columns within each table as well as the estimated number
of rows, and results in an estimated size of one copy of your data on disk.

In order to estimate the actual physical amount of disk storage required for a given
table across your cluster, you'll also need to consider the replication factor for the
table’s keyspace and the compaction strategy in use. The resulting formula for the
total size T, is as follows:

Tt = S xRF; xCSF,

Where S, is the size of the table calculated using the formula referenced above, RF, is
the replication factor of the keyspace, and CSF, is a factor representing the compac-
tion strategy of the table, whose value is as follows:

« 2 for the SizeTieredCompactionStrategy. The worst-case scenario for this strat-
egy is that there is a second copy of all the data required for a major compaction.

o 1.25 for other compaction strategies, which have been estimated to require 20%
overhead during a major compaction. The actual overhead will vary based on
your data, but this is a reasonable starting point.

Once you know the total physical disk size of the data for all tables, you can then sum
those values across all keyspaces and tables to arrive at the total data size for the clus-
ter.

You can then divide this total by the amount of usable storage space per disk to esti-
mate a required number of disks. A reasonable estimate for the usable storage space
of a disk is 90% of the disk size. Historically, Cassandra operators have recommended
1 TB as a maximum data size per node. This tends to provide a good balance between
compute costs and time to complete operations such as compaction or streaming data
to a new or replaced node. This may change in future releases.

Note that this calculation is based on the assumption of providing enough overhead
on each disk to handle a major compaction of all keyspaces and tables. It’s possible to
reduce the required overhead if you can ensure such a major compaction will never
be executed by an operations team, but this seems like a risky assumption. Another
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item to note is that this calculation does not take compression of SStables into
account, which is an option we’ll discuss in Chapter 14.

Sizing Cassandra’s System Keyspaces

Alert readers may wonder about the disk space devoted to Cassan-
dra’s internal data storage in the various system keyspaces. This is
typically insignificant when compared to the size of the disk. For
example, you just created a three-node cluster and measured the
size of each node’s data storage at about 18 MB with no additional
keyspaces.

Although this could certainly grow considerably if you are making
frequent use of tracing, the system_traces tables do use TTL to
allow trace data to expire, preventing these tables from overwhelm-
ing your data storage over time.

Once you've calculated the required size and number of nodes, you'll be in a better
position to decide on an initial cluster size. The amount of capacity you build into
your cluster is dependent on how quickly you anticipate growth, which must be bal-
anced against cost of additional hardware, whether it be physical or virtual.

Selecting Instances

It is important to choose the right computing resources for your Cassandra nodes,
whether youre running on physical hardware or in a virtualized cloud environment.
The recommended computing resources for modern Cassandra releases (2.0 and
later) tend to differ for development versus production environments:

Development environments
Cassandra nodes in development environments should generally have CPUs with
at least two cores and 8 GB of memory. Although Cassandra has been success-
fully run on smaller processors such as Raspberry Pi with 512 MB of memory,
this does require a significant performance-tuning effort.

Production environments
Cassandra nodes in production environments should have CPUs with at least
eight cores and at least 32 GB of memory. Having additional cores and memory
tends to increase the throughput of both reads and writes.

Storage

There are a few factors to consider when selecting and configuring storage, including
the type and quantities of drives to use:
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HDDs versus SSDs
Cassandra supports both hard disk drives (HDDs, also called spinning drives) and
solid state drives (SSDs) for storage. Although Cassandra’s usage of append-based
writes is conducive to sequential writes on spinning drives, SSDs provide higher
performance overall because of their support for low-latency random reads.

Historically, HDDs have been the more cost-effective storage option, but the cost
of using SSDs has continued to come down, especially as more and more cloud
platform providers support this as a storage option. As appropriate for your
deployment, configure the disk_optimization_strategy in the cassandra.yaml
file to either ssd (the default) or spinning.

Disk configuration
If youre using spinning disks, it's best to use separate disks for data and commit
log files. If you're using SSDs, the data and commit log files can be stored on the
same disk.

JBOD versus RAID
Using servers with multiple disks is a recommended deployment pattern, with
Just a Bunch of Disks (JBOD) or Redundant Array of Independent Disks (RAID)
configurations. Because Cassandra uses replication to achieve redundancy across
multiple nodes, the RAID 0 (or striped volume) configuration is considered suffi-
cient. The JBOD approach provides the best overall performance and is a good
choice if you have the ability to replace individual disks.

Use caution when considering shared storage

The standard recommendation for Cassandra deployments has been to avoid
using storage area networks (SAN) and network-attached storage (NAS). These
storage technologies don't scale as effectively as local storage—they consume
additional network bandwidth in order to access the physical storage over the
network, and they require additional I/O wait time on both reads and writes.
However, we'll consider possible exceptions to this rule below in “Cloud Deploy-
ment” on page 237.

Network

Because Cassandra relies on a distributed architecture involving multiple networked
nodes, here are a few things you’ll need to consider:

Throughput
First, make sure your network is sufficiently robust to handle the traffic associ-
ated with distributing data across multiple nodes. The recommended network
bandwidth is 1 Gbps or higher.
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Network configuration
Make sure that you've correctly configured firewall rules and IP addresses for
your nodes and network appliances to allow traffic on the ports used for the CQL
native transport, inter-node communication (the listen_address), JMX, and so
on. This includes networking between data centers (we'll discuss cluster topology
momentarily). It's reccommended to run internode and client-to-node traffic on
different interfaces.

The clocks on all nodes and clients should be synchronized using the Network
Time Protocol (NTP) or other methods. Remember that Cassandra only over-
writes columns if the timestamp for the new value is more recent than the time-
stamp of the existing value. Without synchronized clocks, writes from nodes or
clients that lag behind can be lost.

Avoid load balancers

Load balancers are a feature of many computing environments. While these are
frequently useful to spread incoming traffic across multiple service or application
instances, it’s not recommended to use load balancers with Cassandra. Cassandra
already provides its own mechanisms to balance network traftic between nodes,
and the DataStax drivers spread client queries across replicas, so strictly speaking
a load balancer won't offer any additional help. Besides this, putting a load bal-
ancer in front of your Cassandra nodes potentially introduces a single point of
failure, which could reduce the availability of your cluster.

Timeouts
If you're building a cluster that spans multiple data centers, it’s a good idea to
measure the latency between data centers and tune timeout values in the cassan-
dra.yaml file accordingly.

A proper network configuration is key to a successful Cassandra deployment,
whether it is in a private data center, a public cloud spanning multiple data centers, or
even a hybrid cloud environment.

Cloud Deployment

Now that you've learned the basics of planning a cluster deployment, let'’s examine
options for deploying Cassandra in some of the most popular public cloud providers.

There are a couple of key advantages that you can realize by using commercial cloud
computing providers. First, you can select from multiple data centers in order to
maintain high availability. If you extend your cluster to multiple data centers in an
active-active configuration and implement a sound backup strategy, you can avoid
having to create a separate disaster recovery system.
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Second, using commercial cloud providers allows you to situate your data in data
centers that are closer to your customer base, thus improving application response
time. If your application’s usage profile is seasonal, you can expand and shrink your
clusters in each data center according to the current demands.

You may want to save time by using a prebuilt image that already contains Cassandra.
There are also companies that provide Cassandra as a managed service in a Software-
as-a-Service (SaaS) offering, as discussed in Chapter 3.

Don't Forget Cloud Resource Costs

In planning a public cloud deployment, you’ll want to make sure to
estimate the cost to operate your cluster. Don’t forget to account for

" resources, including compute services, node and backup storage,
and networking.

Amazon Web Services

Amazon Web Services (AWS) has long been a popular deployment option for Cas-
sandra, as evidenced by the presence of AWS-specific extensions in the Cassandra
project, such as the Ec2Snitch, Ec2MultiRegionSnitch, and EC2MultiRegionAddres
sTranslator in the DataStax Java Driver.

Cluster layout
AWS is organized around the concepts of regions and availability zones, which
are typically mapped to the Cassandra constructs of data centers and racks,
respectively. A sample AWS cluster topology spanning the us-east-1 (Virginia)
and eu-west-1 (Ireland) regions is shown in Figure 10-3. The node names are
notional—this naming is not a required convention.
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AWS us-east-1 (Virginia) AWS eu-west-1 (Ireland)
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public network, \iPN, or VPC peering

Figure 10-3. Topology of a cluster in two AWS regions

EC2 instances

The Amazon Elastic Compute Cloud (EC2) provides a variety of different virtual
hardware instances grouped according to various classes. The two classes most
frequently recommended for production Cassandra deployments are the C-class
and the I-class, while the more general-purpose T-class and M-class instances are
suitable for development and smaller production clusters.

The I-class instances are SSD-backed and designed for high I/O. These instances
are ideal when using ephemeral storage, while the C-class instances are compute-
optimized and suitable when using block storage. We'll discuss these storage
options below.

You can find more information about the various instance types available at
https://docs.aws.amazon.com/AWSEC2/latest/ UserGuide/instance-types.html.

Bitnami provides prebuilt Amazon Machine Images (AMIs) to simplify deploy-
ment, which you can find on their website or in the AWS Martketplace.

Data storage

The two options for storage in AWS EC2 are ephemeral storage attached to vir-
tual instances and Amazon Elastic Block Store (EBS). The right choice for your
deployment depends on factors that include cost and operations.
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The lower cost option is to use ephemeral storage. The drawback of this is that if
an instance on which a node is running is terminated (as happens occasionally in
AWS), the data is lost.

Alternatively, EBS volumes are a reliable place to store data that doesn’t go away
when EC2 instances are dropped, and you can enable encryption on your vol-
umes. However, reads will have some additional latency and your costs will be
higher than ephemeral storage.

AWS services such as Amazon Simple Storage Service (S3) and Amazon S3 Gla-
cier are a good option for short- to medium-term and long-term storage of back-
ups, respectively. On the other hand, it is quite simple to configure automatic
backups of EBS volumes, which simplifies backup and recovery. You can create a
new EBS volume from an existing snapshot.

Networking

If you're running a multiregion configuration, you’ll want to make sure you have
adequate networking between the regions. Many have found that using elements
of the Amazon Virtual Private Cloud (VPC) provides an effective way of achiev-
ing reliable, high-throughput connections between regions. AWS Direct Connect
provides dedicated private networks, and there are virtual private network (VPN)
options available as well. These services, of course, come at an additional cost.

If you have a single region deployment or a multiregion deployment using VPC
peering, you can use the Ec2Snitch. If you have a multiregion deployment that
uses public IP between regions, use the Ec2MultiRegionSnitch. Both EC2
snitches use the cassandra-rackdc.properties file, with data centers named after
AWS regions (i.e., us-east-1) and racks named after availability zones (i.e., us-
east-1a). Use the GossipingPropertyFileSnitch if you anticipate including
data centers outside of AWS in your cluster.
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Use Scripting to Automate Cassandra Deployments

If you find yourself operating a cluster with more than just a few
nodes, you'll want to start thinking about automating deployment
as well as other cluster maintenance tasks we’ll consider in Chap-
ter 12. A best practice is to use a scripting approach, sometimes
known as “Infrastructure as Code” For example, if using AWS
CloudFormation, you might create a single CloudFormation tem-
plate that describes the deployment of Cassandra nodes within a
data center, and then reuse that in a CloudFormation StackSet to
describe a cluster deployed in multiple AWS regions.

To get a head start on building scripts using tools like Puppet, Chef,
Ansible, and Terraform, you can find plenty of open source exam-
ples on repositories such as GitHub and the DataStax Examples

page.

Additional guidance for deploying Cassandra on AWS can be found on the AWS
website.

Google Cloud Platform

Google Cloud Platform (GCP) provides cloud computing, application hosting, net-
working, storage, and various Software-as-a-Service (SaaS) offerings. In particular,
GCP is well-known for its big data and Cloud Machine Learning services. You may
wish to deploy (or extend) a Cassandra cluster into GCP to bring your data closer to
these services.

Cluster layout
The Google Compute Engine (GCE) provides regions and zones, corresponding
to Cassandra’s data centers and racks, respectively. Similar conventions for cluster
layout apply as in AWS. Google Cloud Stackdriver also provides a nice Cassandra
integration for collecting and analyzing metrics.

Virtual machine instances
You can launch Cassandra quickly on the Google Cloud Platform using the
Cloud Launcher. For example, if you search the launcher at the Google Cloud
Platform site, you’ll find options for creating a cluster in just a few button clicks
based on available VM images.

If youre going to build your own images, GCE’s nl-standard and nl-highmem
machine types are recommended for Cassandra deployments.

Data storage
GCE provides a variety of storage options for instances ranging from local spin-
ning disk, and SSD options for both ephemeral drives and network-attached
drives.
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Networking
You can deploy your cluster in a single global VPC network which can span
regions on Google’s private network. You can also create connections between
your own data centers and a Google VPC using Dedicated Interconnect or Part-
ner Interconnect.

The GoogleCloudSnitch is a custom snitch designed just for the GCE, which also
uses the cassandra-rackdc.properties file. The snitch may be used in a single region or
across multiple regions. VPN networking is available between regions.

Microsoft Azure

Microsoft Azure is known as a cloud which is particularly well suited for enterprises,
partly due to the large number of supported regions. Similar to GCP, there are a num-
ber of quick deployment options available in the Azure Marketplace.

Cluster layout
Azure provides data centers in locations worldwide, using the same term region
as AWS. The concept of availability sets is used to manage collections of VMs.
Azure manages the assignment of the VMs in an availability set across update
domains, which equate to Cassandra’s racks.

Virtual machine instances
The Azure Resource Manager is recommended if youre managing your own
cluster deployments, since it enables specifying required resources declaratively.

Similar to AWS, Azure provides several classes of VMs. The D series VMs pro-
vide general-purpose, SSD-backed instances appropriate for most Cassandra
deployments. The H series VMs provide additional memory as might be required
for integrations such as the Apache Spark integration described in Chapter 15.
You can find more information about Azure VM types on the Azure site.

Data storage
Azure provides SSD, Premium SSD, and HDD options on the previously men-
tioned instances. Premium SSDs are recommended for Cassandra nodes.

Networking
There is not a dedicated snitch for Azure. Instead, use the GossipingPropertyFi
leSnitch to allow your nodes to detect the cluster topology. For networking you
may use public IPs, VPN gateways, or Azure virtual network (VNet) peering.
VNet Peering is recommended as the best option, with peering of VNets within a
region or global peering across regions available.
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Summary

In this chapter, you learned how to create Cassandra clusters and add additional
nodes to a cluster. You learned how to configure Cassandra nodes via the cassan-
dra.yaml file, including setting the seed nodes, the partitioner, the snitch, and other
settings. You also learned how to configure replication for a keyspace and how to
select an appropriate replication strategy. Finally, you learned how to plan a cluster
and deploy in environments, including multiple public clouds. Now that you've
deployed your first cluster, you're ready to learn how to monitor it.
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CHAPTER 11
Monitoring

The term observability is often used to describe a desirable attribute of distributed
systems. Observability means having visibility into the various components of a sys-
tem in order to detect, predict, and perhaps even prevent the complex failures that
can occur in distributed systems. Failures in individual components can affect other
components in turn, and multiple failures can interact in unforeseen ways, leading to
system-wide outages. Common elements of an observability strategy for a system
include metrics, logging, and tracing.

In this chapter, you'll learn how Cassandra supports these elements of observability
and how to use available tools to monitor and understand important events in the life
cycle of your Cassandra cluster. We'll look at some simple ways to see what’s going on,
such as changing the logging levels and understanding the output.

To begin, let’s discuss how Cassandra uses the Java Management Extensions (JMX) to
expose information about its internal operations and allow the dynamic configura-
tion of some of its behavior. That will give you a basis to learn how to monitor Cas-
sandra with various tools.

Monitoring Cassandra with JMX

Cassandra makes use of JMX to enable remote management of your nodes. JMX
started as Java Specification Request (JSR) 160 and has been a core part of Java since
version 5.0. You can read more about the JMX implementation in Java by examining
the java.lang.management package.

JMX is a Java API that provides management of applications in two key ways. First, it
allows you to understand your application’s health and overall performance in terms
of memory, threads, and CPU usage—things that apply to any Java application. Sec-
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ond, it allows you to work with specific aspects of your application that you have
instrumented.

Instrumentation refers to putting a wrapper around application code that provides
hooks from the application to the JVM in order to allow the JVM to gather data that
external tools can use. Such tools include monitoring agents, data analysis tools, pro-
filers, and more. JMX allows you not only to view such data but also, if the applica-
tion enables it, to manage your application at runtime by updating values.

Many popular Java applications are instrumented using JMX, including the JVM
itself, the Tomcat application server, and Cassandra. Figure 11-1 shows the JMX
architecture as used by Cassandra.

(assandra Node

Local JMX Clients

Cassandra Daemon (JVM)

Remote JMX Clients

« nodetool

« Jeonsole

- Java Mission
Control

«  OpsCenter

‘ (assandra classes H (assandra MBeans H MBean Server

Operating System

Figure 11-1. The JMX architecture

The JMX architecture is simple. The JVM collects information from the underlying
operating system. The JVM itself is instrumented, so many of its features are exposed,
including memory management and garbage collection, threading and deadlock
detection, classloading, and logging.

An instrumented Java application (such as Cassandra) runs on top of this, also expos-
ing some of its features as manageable objects. The Java Development Kit (JDK)
includes an MBean server that makes the instrumented features available over a
remote protocol to a JMX management application. The JVM also offers manage-
ment capabilities via the Simple Network Monitoring Protocol (SNMP), which may
be useful if you are using SMTP monitoring tools such as Nagios or Zenoss.
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Connecting Remotely via JIMX

By default, Cassandra runs with JMX enabled for local access only.
To enable remote access, edit the file <cassandra-home>/cassandra-
env.sh (or cassandra-env.psl on Windows). Search for “IMX” to
find the section of the file with options to control the JMX port and
other local/remote connection settings. For example, in public
cloud deployments it is often required to override the setting of the
java.rmi.server.hostname command line argument passed to the
JVM to enable remote clients to access JMX.

Within a given application, you can manage only what the application developers
have made available for you to manage. Luckily, the Cassandra developers have
instrumented large parts of the database engine, making management via JMX fairly
straightforward.

JMX Clients

In this chapter we'll focus on Nodetool, but there are plenty of other JMX clients
available:

JConsole
The JConsole tool ships with the standard Java Development Kit. It provides a
graphical user interface client for working with MBeans and can be used for local
or remote management. JConsole is an easy choice when youre looking for a
JMX client, because it’s easy to use and doesn’t require a separate install

Oracle Java Mission Control and Visual VM
These tools also ship with the Oracle JDK and provide more robust metrics,
diagnostics, and visualizations for memory usage, threads, garbage collection,
and others. The main comparison between the two is that Visual VM is an open
source project available under the GNU license, while Mission Control provides
a deeper level of integration with the Oracle JVM via a framework called Flight
Control.

Java Mission Control can be run via the command $JAVA_HOME/bin/jmc, and
Visual VM via the command $JAVA_HOME/bin/jvisualvm. Both are suitable for
usage in development and production environments.

MX4]
The Management Extensions for Java (MX4]) project provides an open source
implementation of JMX, including tooling, such as an embedded web interface to
JMX using HTTP/HTML. This allows interactions with JMX via a standard web
browser.
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To integrate MX4] into a Cassandra installation, download the mx4j_tools.jar
library, save the JAR file in the lib directory of your Cassandra installation, and
configure the MX4J_ADDRESS and MX4J_PORT options in conf/cassandra-env.sh.

Jmxterm
Jmxterm is a command-line JMX client that allows access to a JMX server
without a graphical interface. This can be especially useful when working in
cloud environments, as the graphical tools are typically more resource intensive.

Jmxterm is an open source Java project available from the CyclopsGroup.

IDE Integrations
You can also find JMX clients that integrate with popular IDEs; for example,
eclipse-jmx.

Cassandra’s MBeans

A managed bean, or MBean, is a special type of Java bean that represents a single
manageable resource inside the JVM. MBeans interact with an MBean server to make
their functions remotely available. Many classes in Cassandra are exposed as MBeans,
which means in practical terms that they implement a custom interface that describes
attributes they expose and operations that need to be implemented and for which the
JMX agent will provide hooks.

For example, let’s look at Cassandra’s CompactionManager from the org.apache.cas
sandra.db.compaction package and how it uses MBeans. Here’s a portion of the defi-
nition of the CompactionManagerMBean class, with comments omitted for brevity:

public interface CompactionManagerMBean

{
public List<Map<String, String>> getCompactions();
public List<String> getCompactionSummary();
public TabularData getCompactionHistory();

public void forceUserDefinedCompaction(String dataFiles);
public void stopCompaction(String type);
public void stopCompactionById(String compactionId);

public int getCoreCompactorThreads();
public void setCoreCompactorThreads(int number);

}
Some simple values in the application are exposed as attributes. An example of this is
the coreCompactorThreads attribute, for which getter and setter operations are pro-
vided. Other attributes that are read-only are the current compactions in progress,
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the compactionSummary, and the compactionHistory. You can refresh to see the most
recent values, but that’s pretty much all you can do with them. Because these values
are maintained internally in the JVM, it doesn’t make sense to set them externally
(they’re derived from actual events, and are not configurable).

MBeans can also make operations available to the JMX agent that let you execute
some useful action. The forceUserDefinedCompaction() and stopCompaction()
methods are operations that you can use to force a compaction to occur or stop a
running compaction from a JMX client.

As you can see by this MBean interface definition, there’s no magic going on. This is
just a regular interface defining the set of operations. The CompactionManager class
implements this interface and does the work of registering itself with the MBean
server for the JMX attributes and operations that it maintains locally:

public static final String MBEAN_OBJECT_NAME =
"org.apache.cassandra.db:type=CompactionManager";

static

{
instance = new CompactionManager();
MBeanWrapper.instance.registerMBean(instance, MBEAN_OBJECT_NAME);

}
Note that the MBean is registered in the domain org.apache.cassandra.db with a

type of CompactionManager. The attributes and operations exposed by this MBean
appear under org.apache.cassandra.db > CompactionManager in JMX clients.

In the following sections, you’ll learn about some of the key MBeans that Cassandra
exposes to allow monitoring and management via JMX. Many of these MBeans corre-
spond to the services and managers introduced in Chapter 6. In most cases, the oper-
ations and attributes exposed by the MBeans are accessible via nodetool commands
discussed throughout this book.

Database MBeans

These are the Cassandra classes related to the core database itself that are exposed to
clients in the org.apache.cassandra.db domain. There are many MBeans in this
domain, but we'll focus on a few key ones related to the data the node is responsible
for storing, including caching, the commit log, and metadata about specific tables.

Storage Service MBean

Because Cassandra is a database, it’s essentially a very sophisticated storage program;
therefore, Cassandra’s storage engine as implemented in the org.apache.cassan
dra.service.StorageService is an essential focus of monitoring and management.
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The corresponding MBean for this service is the StorageServiceMBean, which pro-
vides many useful attributes and operations.

The MBean exposes identifying information about the node, including its host ID,
the cluster name, and partitioner in use. It also allows you to inspect the node’s Opera
tionMode, which reports normal if everything is going smoothly (other possible states
are leaving, joining, decommissioned, and client). These attributes are used by
nodetool commands such as describecluster and info.

You can also view the current set of live nodes, as well as the set of unreachable nodes
in the cluster. If any nodes are unreachable, Cassandra will tell you their IP addresses
in the UnreachableNodes attribute.

To get an understanding of how much data is stored on each node, you can use the
getLoadMapWithPort() method, which will return a Java Map with keys of IP
addresses with values of their corresponding storage loads. You can also use the
effectiveOwnershipWithPort(String keyspace) operation to access the percent-
age of the data in a keyspace owned by each node. This information is used in the
nodetool ringand status commands.

If youre looking for which nodes own a certain partition key, you can use the getNa
turalEndpointsWithPort() operation. Pass it the keyspace name, table name, and
the partition key for which you want to find the endpoint value, and it will return a
list of IP addresses (with port number) that are responsible for storing this key.

You can also use the describeRingWithPortJIMX() operation to get a list of token
ranges in the cluster, including their ownership by nodes in the cluster. This is used
by the nodetool describering operation.

There are many standard maintenance operations that the StorageServiceMBean
affords you, including resumeBootstrap(), joinRing(), flush(), truncate(),
repairAsync(), cleanup(), scrub(), drain(), removeNode(), decommission(), and
operations to start and stop gossip, and the native transport. We'll dig into the node
tool commands that correspond to these operations in Chapter 12.

If you want to change Cassandras logging configuration at runtime without inter-
rupting service (as you'll see in “Logging” on page 268), you can invoke the getLog
gingLevels() method to see the currently configured levels, and then use the
setLogginglLevel(String classQualifier, String level) method to override the
log level for classes matching the pattern you provide.

Storage Proxy MBean

As you learned in Chapter 6, the org.apache.cassandra.service.StorageProxy
provides a layer on top of the StorageService to handle client requests and inter-
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node communications. The StorageProxyMBean provides the ability to check and set
timeout values for various operations, including read and write. Along with many
other attributes exposed by Cassandra’s MBeans, these timeout values would origi-
nally be specified in the cassandra.yaml file. Setting these attributes takes effect only
until the next time the node is restarted, whereupon they’ll be initialized to the values
in the configuration file.

This MBean also provides access to hinted handoff settings such as the maximum
time window for storing hints. Hinted handoff statistics include getTotalHints()
and getHintsInProgress(). You can disable hints for nodes in a particular data cen-
ter with the disableHintsForDC() operation.

You can also turn this node’s participation in hinted handoff on or off via setHinted
HandoffEnabled(), or check the current status via getHintedHandoffEnabled().
These are used by nodetool’s enablehandoff, disablehandoff, and statushandoff
commands, respectively.

Hints Service MBean

In addition to the hinted handoff operations on the StorageServiceMBean, Cassan-
dra provides more hinted handoff controls via the org.apache.cassan
dra.hints.HintsServiceMBean. The MBean exposes the ability to pause and resume
hint delivery You can delete hints that are stored up for a specific node with dele
teAllHintsForEndpoint().

Additionally, you can pause and resume hint delivery to all nodes with pauseDis
patch() and resumeDispatch(). You can delete stored hints for all nodes with the
deleteAllHints() operation, or for a specific node with deleteAllHintsForEnd
point(). These are used by nodetool’s pausehandoff, resumehandoff, and truncate
hints commands.

Column Family Store MBean

Cassandra registers an instance of the org.apache.cassandra.db.ColumnFamilyStor
eMBean for each table stored in the node under org.apache.cassandra.db > Tables
(this is a legacy name: tables were known as column families in early versions of Cas-
sandra).

The ColumnFamilyStoreMBean provides access to the compaction and compression
settings for each table. This allows you to temporarily override these settings on a
specific node. The values will be reset to those configured on the table schema when
the node is restarted.

The MBean also exposes a lot of information about the node’s storage of data for this
table on disk. The getSSTableCountPerLevel() operation provides a list of how
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many SStables are in each tier. The estimateKeys() operation provides an estimate
of the number of partitions stored on this node. Taken together, this information can
give you some insight as to whether invoking the forceMajorCompaction() opera-
tion for this table might help free space on this node and increase read performance.

There is also a trueSnapshotsSize() operation that allows you to determine the size
of SSTable shapshots which are no longer active. A large value here indicates that you
should consider deleting these snapshots, possibly after making an archive copy.

Because Cassandra stores indexes as tables, there is also a ColumnFamilyStoreMBean
instance for each indexed column, available under org.apache.cassandra.db >
IndexTables (previously IndexColumnFamilies), with the same attributes and opera-
tions.

Commit Log MBean

The org.apache.cassandra.db.commitlog.CommitLogMBean exposes attributes and
operations that allow you to learn about the current state of commit logs. The Commi
tLogMBean also exposes the recover() operation which can be used to restore data-
base state from archived commit log files.

The default settings that control commit log recovery are specified in the conf/commi-
tlog_archiving.properties file, but can be overridden via the MBean. You'll learn more
about data recovery in Chapter 12.

Compaction Manager MBean

You've already taken a peek inside the source of the org.apache.cassandra.db.com
paction.CompactionManagerMBean to see how it interacts with JMX, but we didn’t
really talk about its purpose. This MBean allows you to get statistics about compac-
tions performed in the past, and the ability to force compaction of specific SSTable
files we identify by calling the forceUserDefinedCompaction method of the Compac
tionManager class. This MBean is leveraged by nodetool commands, including com
pact, compactionhistory, and compactionstats.

Cache Service MBean

The org.apache.cassandra.service.CacheServiceMBean provides access to Cas-
sandra’s key cache, row cache, and counter cache under the domain org.apache.cas
sandra.db > Caches. The information available for each cache includes the
maximum size and time duration to cache items, and the ability to invalidate each
cache.
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Cluster-Related MBeans

There are plenty of additional MBeans outside the core database engine that help
manage how a Cassandra node relates to other nodes in its cluster, including snitch-
ing, gossip and failure detection, hinted handoff, messaging, and streaming.

Gossiper MBean

The org.apache.cassandra.gms.GossiperMBean provides access to the work of the
Gossiper.

We've already discussed how the StorageServiceMBean reports which nodes are
unreachable. Based on that list, you can call the getEndpointDowntime() operation
on the GossiperMBean to determine how long a given node has been down. The
downtime is measured from the perspective of the node whose MBean you're inspect-
ing, and the value resets when the node comes back online. Cassandra uses this oper-
ation internally to know how long it can wait to discard hints.

The getCurrentGenerationNumber() operation returns the generation number asso-
ciated with a specific node. The generation number is included in gossip messages
exchanged between nodes and is used to distinguish the current state of a node from
the state prior to a restart. The generation number remains the same while the node is
alive and is incremented each time the node restarts. It's maintained by the Gossiper
using a timestamp.

The assassinateEndpoint() operation attempts to remove a node from the ring by
telling the other nodes that the node has been permanently removed, similar to the
concept of “character assassination” in human gossip. Assassinating a node is a main-
tenance step of last resort when a node cannot be removed from the cluster normally.
This operation is used by the nodetool assassinate command.

Failure Detector MBean

The org.apache.cassandra.gms.FailureDetectorMBean provides attributes
describing the states and Phi scores of other nodes, as well as the Phi conviction
threshold.

Snitch MBeans

Cassandra provides two MBeans to monitor and configure behavior of the snitch.
The org.apache.cassandra.locator.EndpointSnitchInfoMBean provides the name
of the rack and data center for a given host, as well as the name of the snitch in use.

If youre using the DynamicEndpointSnitch, the org.apache.cassandra.loca
tor.DynamicEndpointSnitchMBean is registered. This MBean exposes the ability to
reset the badness threshold used by the snitch to determine when to change its pre-
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ferred replica for a token range, as well as allowing you to see the scores for various
nodes.

Stream Manager MBean

The org.apache.cassandra.streaming.StreamManagerMBean allows us to see the
SSTable streaming activities that occur between a node and its peers. There are two
basic ideas here: a stream source and a stream destination. Each node can stream its
data to another node in order to perform load balancing, and the StreamManager
class supports these operations. The StreamManagerMBean gives a necessary view into
the data that is moving between nodes in the cluster.

The StreamManagerMBean supports two modes of operation. The getCurrent
Streams() operation provides a snapshot of the current incoming and outgoing
streams, and the MBean also publishes notifications associated with stream state
changes, such as initialization, completion, or failure. You can subscribe to these noti-
fications in your JMX client in order to watch the streaming operations as they occur.

So in conjunction with the StorageServiceMBean, if youre concerned that a node is
not receiving data as it should, or that a node is unbalanced or even down, these two
MBeans working together can give you very rich insight into exactly what's happen-
ing in your cluster.

Messaging Service MBean

As you learned in Chapter 6, the org.apache.cassandra.net.MessagingService
manages messages to and from other nodes other than streaming. The MessagingSer
viceMBean exposes attributes that include data about pending and dropped messages,
as well as operations to manage backpressure.

Internal MBeans

The final MBeans well consider describe internal operations of the Cassandra node,
including threading, garbage collection, security, and exposing metrics.

Thread Pool MBeans

Cassandra’s thread pools are implemented via the JMXEnabledThreadPoolExecutor
and JMXConfigurableThreadPoolExecutor classes in the org.apache.cassan
dra.concurrent package. The MBeans for each stage implement the JMXEnabled
ThreadPoolExecutorMBean and JMXConfigurableThreadPoolExecutorMBean
interfaces, respectively, which allow you to view and configure the number of core
threads in each thread pool as well as the maximum number of threads. The MBeans
for each type of thread pool appear under the org.apache.cassandra.internal
domain to JMX clients.

254 | Chapter 11: Monitoring



Garbage Collection MBeans

The JVM’s garbage collection processing can impact tail latencies if not tuned prop-
erly, so it's important to monitor its performance, as you'll see in Chapter 13. The
GCInspectorMXBean appears in the org.apache.cassandra.service domain. It
exposes the operation getAndResetStats() which retrieves and then resets garbage
collection metrics that Cassandra collects on its JVM, which is used by the nodetool
gcstats command. It also exposes attributes that control the thresholds at which
INFO and WARN logging messages are generated for long garbage collection pauses.

Security MBeans

The org.apache.cassandra.auth domain defines the AuthCacheMBean, which expo-
ses operations used to configure how Cassandra caches client authentication records.
We'll discuss this MBean in Chapter 14.

Metrics MBeans

The ability to access metrics related to application performance, health, and key activ-
ities has become an essential tool for maintaining web-scale applications. Fortunately,
Cassandra collects a wide range of metrics on its own activities to help you under-
stand the behavior. JMX supports several different styles of metrics, including coun-
ters, gauges, meters, histograms, and timers.

To make its metrics accessible via JMX, Cassandra uses the Dropwizard Metrics open
source Java library. Cassandra uses the org.apache.cassandra.metrics.Cassandra
MetricsRegistry to register its metrics with the Dropwizard Metrics library, which
in turn exposes them as MBeans in the org.apache.cassandra.metrics domain.
You'll see in “Metrics” on page 265 a summary of the specific metrics that Cassandra
reports and learn how these can be exposed to metrics aggregation frameworks.

Monitoring with nodetool

You've already explored a few of the commands offered by nodetool in previous
chapters, but let’s take this opportunity to get properly acquainted.

nodetool ships with Cassandra and can be found in <cassandra-home>/bin. This is a
command-line program that offers a rich array of ways to look at your cluster, under-
stand its activity, and modify it. nodetool lets you get statistics about the cluster, see
the ranges each node maintains, move data from one node to another, decommission
anode, and even repair a node that’s having trouble.

Behind the scenes, nodetool uses JMX to access the MBeans described above using a
helper class called org.apache.cassandra.tools.NodeProbe. The NodeProbe class
connects to the JMX agent at a specified node by its IP address and JMX port, locates
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MBeans, retrieves their data, and invokes their operations. The NodeToolCmd class in
the same package is an abstract class which is extended by each nodetool command
to provide access to administrative functionality in an interactive command-line
interface.

nodetool uses the same environment settings as the Cassandra daemon: bin/cassan-
dra.in.sh and conf/cassandra-env.sh on Unix (or bin/cassandra.in.bat and conf/
cassandra-env.ps1 on Windows). The logging settings are found in the conf/logback-
tools.xml file; these work the same way as the Cassandra daemon logging settings
found in conf/logback.xml.

Starting nodetool is a breeze. Just open a terminal, navigate to <cassandra-home>,
and enter the following command:

$ bin/nodetool help

This causes the program to print a list of available commands, several of which we
will cover momentarily. Running nodetool with no arguments is equivalent to the
help command. You can also execute help with the name of a specific command to
get additional details.

Connecting to a Specific Node

With the exception of the help command, nodetool must connect
to a Cassandra node in order to access information about that node
or the cluster as a whole.

You can use the -h option to identify the IP address of the node to
connect to with nodetool. If no IP address is specified, the tool
attempts to connect to the default port on the local machine.

If you have a ccm cluster available, as discussed in Chapter 10, you
can run nodetool commands against specific nodes, for example:

ccm nodel nodetool help

To get more interesting statistics from a cluster as you try out the
commands in this chapter yourself, you might want to run your
own instance of the Reservation Service introduced in Chapter 7
and Chapter 8.

Getting Cluster Information

You can get a variety of information about the cluster and its nodes, which we look at
in this section. You can get basic information on an individual node or on all the
nodes participating in a ring.
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describecluster

The describecluster command prints out basic information about the cluster,
including the name, snitch, and partitioner. For example, here’s a portion of the out-
put when run against the cluster created for the Reservation Service using ccm:

$ ccm nodel nodetool describecluster

Cluster Information:
Name: reservation_service
Snitch: org.apache.cassandra.locator.SimpleSnitch
DynamicEndPointSnitch: enabled
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Schema versions:
2b88dbfd-6e40-3ef1-af11-d88b6dff2c3b: [127.0.0.4, 127.0.0.3,
127.0.0.2, 127.0.0.1]

We've shortened the output a bit for brevity. The Schema versions portion of the
output is especially important for identifying any disagreements in table definitions,
or schema, between nodes. While Cassandra propagates schema changes through a
cluster, any differences are typically resolved quickly, so any lingering schema differ-
ences usually correspond to a node that is down or unreachable and needs to be
restarted, which you should be able to confirm via the summary statistics on nodes
that are also printed out.

status

A more direct way to identify the nodes in your cluster and what state they’re in, is to
use the status command:

$ ccm nodel nodetool status

Datacenter: datacenterl

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.1 251.77 KiB 256 48.7% d23716cb... rack1
UN 127.0.0.2 250.28 KiB 256 50.0% 635f2ab7... racki
UN 127.0.0.3 250.47 KiB 256 53.6% alcd5663... racki
UN 127.0.0.4 403.46 KiB 256 a7 .7% b493769e... rackil

The status is organized by data center and rack. Each node’s status is identified by a
two-character code: the first character indicates whether the node is up (currently
available and ready for queries) or down, and the second character indicates the state
or operational mode of the node. The load column represents the byte count of the
data each node is holding. The owns column indidates the effective percentage of the
token range owned by the node, taking replication into account.
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info

The info command tells nodetool to connect with a single node and get basic data
about its current state. Just pass it the address of the node you want info for:

$ ccm node2 nodetool info

ID : 635f2ab7-e81a-423b-a566-674d8010c819
Gossip active : true

Native Transport active: true

Load : 250.28 KiB

Generation No : 1574894395

Uptime (seconds) . 146423

Heap Memory (MB) : 191.69 / 495.00

Off Heap Memory (MB) : 0.00

Data Center : datacenter1

Rack : rackl

Exceptions : 0

Key Cache : entries 10, size 896 bytes, capacity 24 MiB,

32 hits, 44 requests, 0.727 recent hit rate,
14400 save period in seconds
Row Cache : entries 0, size 0 bytes, capacity 0 bytes,
0 hits, 0 requests, NaN recent hit rate,
0 save period in seconds
Counter Cache : entries 0, size 0 bytes, capacity 12 MiB,
0 hits, 0 requests, NaN recent hit rate,
7200 save period in seconds
Chunk Cache : entries 16, size 256 KiB, capacity 91 MiB,
772 misses, 841 requests, 0.082 recent hit rate,
NaN microseconds miss latency
Percent Repaired : 100.0%
Token : (invoke with -T/--tokens to see all 256 tokens)

The information reported includes the memory and disk usage (Load) of the node
and the status of various services offered by Cassandra. You can also check the status
of individual services with the nodetool commands statusgossip, statusbinary,
and statushandoff (note that handoff status is not part of info).

ring
To determine what nodes are in your ring and what state they’re in, use the ring com-

mand on nodetool, like this:

$ Datacenter: datacenteril

Address Rack  Status State Load Owns Token
9218490134647118760
127.0.0.1 rackl Up Normal 251.77 KiB 48.73% -9166983985142207552
127.0.0.4 rackl Up Normal 403.46 KiB 47.68% -9159867377343852899
127.0.0.2 rackl Up Normal 250.28 KiB 49.99% -9159653278489176223
127.0.0.1 rackl Up Normal 251.77 KiB 48.73% -9159520114055706114
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This output is organized in terms of virtual nodes (vnodes). Here you see the IP
addresses of all the nodes in the ring. In this case, there are three nodes, all of which
are up (currently available and ready for queries). The load column represents the
byte count of the data each node is holding. The output of the describering com-
mand is similar but is organized around token ranges.

Other useful status commands provided by nodetool include:

o The getLogginglLevels and setlLogginglLevels commands allow dynamic con-
figuration of logging levels, using the Logback JMXConfiguratorMBean we dis-
cussed previously.

o The gossipinfo command prints the information this node disseminates about
itself and has obtained from other nodes via gossip, while fatluredetector pro-
vides the Phi failure detection value calculated for other nodes.

o The version command prints the version of Cassandra this node is running.

Getting Statistics

nodetool also lets you gather statistics about the state of your server in the aggregate
level as well as down to the level of specific keyspaces and tables. Two of the most
frequently used commands are tpstats and tablestats, both of which we examine
now.

Using tpstats

The tpstats tool gives us information on the thread pools that Cassandra maintains.
Cassandra is highly concurrent, and optimized for multiprocessor/multicore
machines, so understanding the behavior and health of the thread pools is important
to good Cassandra maintenance.

To find statistics on the thread pools, execute nodetool with the tpstats command:

$ bin/nodetool tpstats
ccm nodel nodetool tpstats

Pool Name Active Pending Completed Blocked All time blocked
ReadStage 0 0 399 0 0
MiscStage 0 0 0 0 0
CompactionExecutor 0 0 95541 0 0
MutationStage 0 0 0 0 0

Message type Dropped Latency waiting in queue (micros)

50% 95% 99% Max
READ_RSP 0 0.00 0.00 0.00 0.00
RANGE_REQ 0 0.00 0.00 0.00 0.00
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PING_REQ 0 0.00 0.00 0.00 0.00
_SAMPLE 0 0.00 0.00 0.00 0.00

The top portion of the output presents data on tasks in each of Cassandra’s thread
pools. You can see directly how many operations are in what stage, and whether they
are active, pending, or completed. For example, by reviewing the number of active
tasks in the MutationStage, you can learn how many writes are in progress.

The bottom portion of the output indicates the number of dropped messages for the
node. Dropped messages are an indicator of Cassandras load shedding implementa-
tion, which each node uses to defend itself when it receives more requests than it can
handle. For example, internode messages that are received by a node but not pro-
cessed within the rpc_timeout are dropped, rather than processed, as the coordinator
node will no longer be waiting for a response.

Seeing lots of zeros in the output for blocked tasks and dropped messages means that
you either have very little activity on the server or that Cassandra is doing an excep-
tional job of keeping up with the load. Lots of nonzero values are indicative of situa-
tions where Cassandra is having a hard time keeping up, and may indicate a need for
some of the techniques described in Chapter 13.

Using tablestats

To see overview statistics for keyspaces and tables, you can use the tablestats com-
mand. You may also recognize this command from its previous name, cfstats. Here
is sample output on the reservations_by_confirmation table:

$ ccm nodel nodetool tablestats reservation.reservations_by_confirmation

Total number of tables: 43
Keyspace : reservation

Read Count: 0

Read Latency: NaN ms

Write Count: 0

Write Latency: NaN ms

Pending Flushes: 0
Table: reservations_by_confirmation
SSTable count: 0
Old SSTable count: 0
Space used (live): 0
Space used (total): 0
Space used by snapshots (total): ©
Off heap memory used (total): ©
SSTable Compression Ratio: -1.0
Number of partitions (estimate): 0
Memtable cell count: 0
Memtable data size: 0
Memtable off heap memory used: 0
Memtable switch count: 0
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Local read count: 0

Local read latency: NaN ms

Local write count: 0

Local write latency: NaN ms

Pending flushes: 0

Percent repaired: 100.0

Bloom filter false positives: 0

Bloom filter false ratio: 0.00000

Bloom filter space used: 0

Bloom filter off heap memory used: 0

Index summary off heap memory used: 0

Compression metadata off heap memory used: 0
Compacted partition minimum bytes: 0

Compacted partition maximum bytes: 0

Compacted partition mean bytes: 0

Average live cells per slice (last five minutes): NaN
Maximum live cells per slice (last five minutes): 0
Average tombstones per slice (last five minutes): NaN
Maximum tombstones per slice (last five minutes): 0
Dropped Mutations: 0

You can see the read and write latency, and total number of reads and writes. You can
also see detailed information about Cassandra’s internal structures for the table,
including memtables, Bloom filters, and SSTables. You can get statistics for all the
tables in a keyspace by specifying just the keyspace name, or specify no arguments to
get statistics for all tables in the cluster.

Virtual Tables

In the 4.0 release, Cassandra added a virtual tables feature. Virtual tables are so
named because they are not actual tables that are stored using Cassandra’s typical
write path, with data written to memtables and SSTables. Instead, these virtual tables
are views that provide metadata about nodes and tables via standard CQL.

This metadata is available via two keyspaces which you may have noticed in earlier
chapters when you used the DESCRIBE KEYSPACES command, called system_views
and system_virtual_schema:

cqlsh> DESCRIBE KEYSPACES;

reservation system_traces system_auth system_distributed system_views
system_schema system system_virtual_schema

These two keyspaces contain virtual tables that provide different types of metadata.
Before we look into them, here are a couple of important things you should know
about virtual tables:

 You may not define your own virtual tables.

o The scope of virtual tables is the local node.
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o When interacting with virtual tables through cqlsh, results will come from the
node that cqlsh connected to, as you’ll see next.

o Virtual tables are not persisted, so any statistics will be reset when the node
restarts.

System Virtual Schema
Let’s look first at the tables in the system_virtual_schema:

cqlsh:system> USE system_virtual_schema;
cqlsh:system_virtual_schema> DESCRIBE TABLES;

keyspaces columns tables

If you examine the schema and contents of the keyspaces table, you'll see that the
schema of this table is extremely simple—it’s just a list of keyspace names.

cqlsh:system_virtual_schema> SELECT * FROM KEYSPACES;

keyspace_name

reservation
system_views
system_virtual_schema

(3 rows)

The design of the tables table is quite similar, consisting of keyspace_name,
table_name, and comment columns, in which the primary key is (keyspace_name,
table_name).

The columns table is more interesting. We'll focus on a subset of the available col-
umns:

cqlsh:system_virtual_schema> SELECT column_name, clustering_order, kind,
position, type FROM columns WHERE keyspace_name = 'reservation' AND
table_name = 'reservations_by_hotel_date';

column_name

| |

---------------- R ek e e
confirm_number | none | regular | -1 text
end_date | none | regular | -1 date
guest_1id | none | regular | -1 uuid
hotel_1id | none | partition_key | 0 | text
room_number | asc | clustering | 0 | smallint
start_date | none | partition_key | 1| date

(6 rows)
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As you can see, this query provides enough data to describe the schema of a table,
including the columns and primary key definition. Although it does not include the
table options, the response is otherwise quite similar in content to the output of the
cqlsh DESCRIBE operations.

Interestingly, cqlsh traditionally scanned tables in the system keyspace to implement
these operations, but is updated in the 4.0 release to use virtual tables.

System Views

The second keyspace containing virtual tables is the system_views keyspace. Let’s get
a list of the available views:

cqlsh:system_virtual_schema> SELECT * FROM tables WHERE
keyspace_name = 'system_views';

keyspace_name

caches
clients
coordinator_read_latency
coordinator_scan_latency
system_views | coordinator_write_latency
system_views disk_usage

| [

+ +
system_views |

| [

| [

| [

| [

| [

system_views | internode_inbound |

| [

| [

| [

| [

| [

| [

| [

| [

| [

| [

system_views
system_views
system_views

system caches
currently connected clients

system_views internode_outbound
system_views local_read_latency
system_views local_scan_latency
system_views local_write_latency
system_views max_partition_size
system_views rows_per_read
system_views settings
system_views sstable_tasks
system_views thread_pools
system_views tombstones_per_read

current settings
current sstable tasks

(17 rows)

As you can see, there is a mix of tables that provide latency histograms for reads and
writes to local storage, and for when this node is acting as a coordinator.

The max_partition_size and tombstones_per_read tables are particularly useful in
helping to identify some of the situations that lead to poor performance in Cassandra
clusters, which we'll address in Chapter 12.

The disk_usage view provides the storage expressed in mebibytes (1,048,576 bytes).
Again, remember this is how much storage there is for each table on that individual
node. Related to this is the max_partition_size, which can be useful in determining
if a node is affected by a wide partition. You'll learn more about how to detect and
address these in Chapter 13.
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Let’s look a bit more closely at a couple of these tables. First, let’s have a look at a few
of the columns in the clients table:
cqlsh:system_virtual_schema> USE system_views;

cqlsh:system_views> SELECT address, port, hostname, request_count
FROM clients;

address | port | hostname | request_count
----------- Bt e R e TR
127.0.0.1 | 50631 | localhost | 261
127.0.0.1 | 50632 | localhost | 281

As you can see, this table provides information about each client with an active con-
nection to the node, including its location and number of requests. Other columns
not shown here provide information about the client’s identity and encryption set-
tings, and the protocol version in use. This information is useful to make sure the list
of clients and their level of usage is in line with what you expect for your application.

Another useful table is settings. This allows you to see the values of configurable
parameters for the node set via the cassandra.yaml file or subsequently modified via
JMX:

cqlsh:system_views> SELECT * FROM settings LIMIT 10;

I
+
allocate_tokens_for_keyspace |
allocate_tokens_for_local_replication_factor | null
audit_logging_options_audit_logs_dir | /var/logs/audit/
audit_logging_options_enabled | false
audit_logging_options_excluded_categories |
audit_logging_options_excluded_keyspaces | system,system_schema,
| system_virtual_schema
audit_logging_options_excluded_users |
audit_logging_options_included_categories |
audit_logging_options_included_keyspaces |
audit_logging_options_included_users |

(10 rows)

You'll notice that much of this same information could be accessed via various node
tool commands. However, the value of virtual tables is that they may be accessed
through any client using the CQL native protocol, including applications you write
using the DataStax Java Drivers. Of course, some of these values you may not wish to
allow your clients access to; we'll discuss how to secure access to keyspaces and tables
in Chapter 14.
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More Virtual Table Functionality

While the 4.0 release provides a very useful set of virtual tables, the
Cassandra community has proposed several additional virtual
tables that may be added in future releases, which you can find in
the Cassandra Jira:

o Set configuration values on the settings table
(CASSANDRA-15254)

« Hints metadata (CASSANDRA-14795)

 Additional table metrics (CASSANDRA-14572)

o Access to individual partition sizes (CASSANDRA-12367)

o Get alisting of current running queries (CASSANDRA-15241)
o Repair status (CASSANDRA-15399)

We expect that the data available via virtual tables will eventually
catch up with JMX, and even surpass it in some areas.

If you're interested in the implementation of virtual tables, you can find the code in
the org.apache.cassandra.db.virtual package. For more detail on using virtual
tables, see Alexander Dejanovski’s blog post, “Virtual tables are coming in Cassandra
4.0”.

Metrics

As we mentioned at the start of this chapter, metrics are a vital component of the
observability of the system. It's important to have access to metrics at the OS, JVM,
and application level. The metrics Cassandra reports at the application level include:

o Buffer pool metrics describing Cassandra’s use of memory
o CQL metrics, including the number of prepared and regular statement executions

o Cache metrics for key, row, and counter caches, such as the number of entries ver-
sus capacity, as well as hit and miss rates

o Client metrics, including the number of connected clients, and information about
client requests such as latency, failures, and timeouts

o Commit log metrics, including the commit log size and statistics on pending and
completed tasks

o Compaction metrics, including the total bytes compacted and statistics on pend-
ing and completed compactions

« Connection metrics to each node in the cluster, including gossip

 Dropped message metrics that are used as part of nodetool tpstats
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Read repair metrics describing the number of background versus blocking read
repairs performed over time

Storage metrics, including counts of hints in progress and total hints

Streaming metrics, including the total incoming and outgoing bytes of data
streamed to other nodes in the cluster

Thread pool metrics, including active, completed, and blocked tasks for each
thread pool

Table metrics, including caches, memtables, SSTables, and Bloom filter usage, and
the latency of various read and write operations, reported at 1-, 5-, and 15-
minute intervals

Keyspace metrics that aggregate the metrics for the tables in each keyspace

Many of these metrics are used by nodetool commands such as tpstats, tablehisto
grams, and proxyhistograms. For example, tpstats is simply a presentation of the
thread pool and dropped message metrics.

Resetting Metrics

Note that in Cassandra releases through 4.0, the metrics reported
are lifetime metrics since the node was started. To reset the metrics
on a node, you have to restart it. The Jira issue CASSANDRA-8433
requests the ability to reset the metrics via JMX and nodetool.

Metrics Aggregation

You've already read how Cassandra exposes metrics via JMX and Dropwizard, and
how you can view some of these metrics via tools, including nodetool and cqlsh (via
virtual tables). These tools are a great help for looking at the state of one node at a
time. Cassandra’s metrics can also fit into a broader observability strategy for your
applications.

If you've had experience building cloud applications, you may be familiar with met-
rics aggregation frameworks such as Prometheus and metrics visualization tools such
as Grafana. There’s a simple integration available on GitHub that you can use to
aggregate Cassandra and operating system metrics from across your cluster. This
repository provides configuration files for running Prometheus and Grafana in
Docker, and instructions for how to install agents that will expose metrics from your
nodes to Prometheus. There are four built-in Grafana dashboards which provide use-
tul sets of metrics to observe:
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C* Cluster Overview
This dashboard provides a top-level summary of the health of your cluster, high-
lighting cluster size, total data stored, node compute data in terms of CPU, mem-
ory, disk, and network, and Cassandra statistics.

C* Cluster Metrics
This dashboard provides a deeper look into Cassandra-specific metrics, includ-
ing read and write load and latencies, and information about active, pending, and
blocked tasks per node, as shown in Figure 11-2.

C* Table Metrics
This dashboard allows you to slice read and write metrics by keyspace and table
to get a more fine-grained view.

System Metrics
This dashboard provides a deeper look into the compute metrics of nodes as col-
lected from the host operating system.

28 C*Cluster Metrics -

All~

Write Latency Write Requests By Consistency Write Requests by Instance

UORUM

Read Latency Read Requests By Consistency

500 mps.
AV AVARRAAPGAZ

23:40 0000

EACH_ QUORUM == Rea L_QUORUM
Read-ONE == Read-QUORUM Read-QUORUM

Blocked Tasks Pending Tasks

Figure 11-2. Cassandra metrics dashboard in Grafana
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These dashboards enable you to assess the overall health of Cassandra clusters and get
early indication of potential issues. Another powerful technique is to create dash-
boards that combine Cassandra cluster and application-level metrics such as those
made available via the DataStax drivers, as you learned in Chapter 8. This will give
you a deeper understanding of how Cassandra and your application code interact to
affect the overall performance and health of your system.

Logging

While you can learn a lot about the overall health of your cluster from metrics, log-
ging provides a way to get more specific detail about what’s happening in your data-
base so that you can investigate and troubleshoot specific issues. Cassandra uses the
Simple Logging Facade for Java (SLF4]) API for logging, with Logback as the imple-
mentation. SLF4] provides a facade over various logging frameworks such as Log-
back, Log4j, and Javas built-in logger (java.util.logging). You can learn more
about Logback here. Cassandra’s default logging configuration is found in the file
<cassandra-home>/conf/logback.xml.

The SLF4] API is built around the concepts of loggers and appenders. Each class in a
Java application has a dedicated logger, plus there are loggers for each level of the
package hierarchy, as well as a root logger. This allows fine-grained control over log-
ging; you can configure the log level for a particular class or any level in the package
hierarchy, or even the root level. The API uses a progression of log levels: ALL <
DEBUG < INFO < WARN < ERROR < FATAL < OFF. When you configure a log level for
a logger, messages at that log level and greater will be output via appenders (which
we'll introduce below). You can see how the logging level for Cassandra’s classes is set
in the logback.xml file:

<logger name="org.apache.cassandra" level="DEBUG"/>

Note that the root logger defaults to the INFO logging level, so that is the level at
which all other classes will report.

An appender is responsible for taking generated log messages that match a provided
filter and outputting them to some location. According to the default configuration

found in logback.xml, Cassandra provides appenders for logging into three different
files:

o The system.log contains logging messages at the INFO logging level and greater.
You've already seen some of the contents of the system.log in Chapter 10 as you
were starting and stopping a node, so you know that this log will contain infor-
mation about nodes joining and leaving a cluster. It also contains information
about schema changes.
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o The debug.log contains more detailed messages useful for debugging, incorporat-
ing the DEBUG log level and above. This log can be pretty noisy but provides a lot
of useful information about internal activity within a node, including memtable
flushing and compaction.

+ The gc.log contains messages related to the JVM’s garbage collection. This is a
standard Java garbage collection log file and is particularly useful for identifying
long garbage collection pauses. We'll discuss garbage collection tuning in Chap-
ter 13.

The default configuration also describes an appender for the console log, which you
can access in the terminal window where you start Cassandra by setting the -f flag
(to keep output visible in the foreground of the terminal window).

By default, Cassandra’s log files are stored in the logs directory under the Cassandra
installation directory. If you want to change the location of the logs directory, you can
override this value using the CASSANDRA_LOG_DIR environment variable when starting
Cassandra, or you can edit the logback.xml file directly.

The default configuration does not pick up changes to the logging settings on a live
node. You can ask Logback to rescan the configuration file once a minute, by setting
properties in the logback.xml file:

<configuration scan="true" scanPeriod="60 seconds">

You may also view the log levels on a running node through the nodetool getloggin
glevels command, and override the log level for the logger at any level of the Java
package and class hierarchy using nodetool setlogginglevel.

Other settings in the logback.xml file support rolling log files. By default, the logs are
configured to use the SizeAndTimeBasedRollingPolicy. Each log file will be rolled to
an archive once it reaches a size of 50 MB or at midnight, whichever comes first, with
a maximum of 5 GB across all system logs. For example, look at the configuration of
the rolling policy for the system.log:

<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPo-
licy">

<fileNamePattern>

${cassandra.logdir}/system.log.%d{yyyy-MM-dd}.%1i.zip

</fileNamePattern>

<maxFileSize>50MB</maxFileSize>

<maxHistory>7</maxHistory>

<totalSizeCap>5GB</totalSizeCap>
</rollingPolicy>

Each log file archive is compressed in zip format and named according to the pattern
described above, which will lead to files named system.log.2020-05-30.0.zip, sys-
tem.log.2020-05-30.1.zip, and so on. These archived log files are kept for seven days
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by default. The default settings may well be suitable for development and production
environments; just make sure you account for the storage that will be required in
your planning.

Examining Log Files

You can examine log files in order to determine things that are happening with your
nodes. One of the most important tasks in monitoring Cassandra is to regularly check
log files for statements at the WARN and ERROR log levels. Several of the conditions
under which Cassandra generates WARN log messages are configurable via the cassan-
dra.yaml file:

o The tombstone_warn_threshold property sets the maximum number of tomb-
stones that Cassandra will encounter on a read before generating a warning. This
value defaults to 1000.

o The batch_size_warn_threshold_in_kb property sets the maximum size of the
total data in a batch command, which is useful for detecting clients that might be
trying to insert a quantity of data in a batch that will negatively impact the coor-
dinator node performance. The default value is 5 kb.

o The gc_warn_threshold_in_ms property sets the maximum garbage collection
pause that will cause a warning log. This defaults to 1000 ms (1 second), and the
corresponding setting for INFO log messages gc_log_threshold_in_ms is set at
200 ms.

Here’s an example of a message you might find in the logs for a query that encounters
a large number of tombstones:

WARN [main] 2020-04-08 14:30:45,111 ReadCommand.java:598 -
Read 0 live rows and 3291 tombstone cells for query
SELECT * FROM reservation.reservations_by_hotel_date
(see tombstone_warn_threshold)
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Log Aggregation and Distributed Tracing

As with the use of metrics aggregation, it’s also frequently helpful to
aggregate logs across multiple microservices and infrastructure
components in order to analyze threads of related activity correla-
ted by time. There are many commercial log aggregation solutions
available, and the ELK stack consisting of Elasticsearch, Logstash,
and Kibana is a popular combination of open source projects used
for log aggregation and analysis.

An additional step beyond basic aggregation is the ability to per-
form distributed traces of calls throughout a system. This involves
incorporating a correlation ID into metadata passed on remote
calls or messages between services. The correlation ID is a unique
identifier, typically assigned by a service at the entry point into the
system. The correlation ID can be used as a search criteria through
aggregated logs to identify work performed across a system associ-
ated with a particular request. You'll learn more about tracing with
Cassandra in Chapter 13.

You can also observe the regular operation of the cluster through the log files. For
example, you could connect to a node in a cluster started using ccm, as described in
Chapter 10, and write a simple value to the database using cqlsh:

$ ccm node2 cqlsh

cqlsh> INSERT INTO reservation.reservations_by_confirmation
(confirm_number, hotel_id, start_date, end_date, room_number,
guest_1id) VALUES ('RS2GOZ', 'NY456', '2020-06-08', '2020-06-10',
111, 1b4d86f4-ccff-4256-a63d-45c905df2677);

If you execute this command, cqlsh will use node2 as the coordinator, so you can
check the logs for node2:

$ tail ~/.ccm/reservation_service/node2/logs/system. log
INFO [Messaging-EventLoop-3-5] 2019-12-07 16:00:45,542
OutboundConnection.java:1135 - 127.0.0.2:7000(127.0.0.3:7000)->
127.0.0.3:7000(127.0.0.3:62706) - SMALL_MESSAGES-627a8d80 successfully
connected, version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-10] 2019-12-07 16:00:45,545
OutboundConnection.java:1135 - 127.0.0.2:7000(127.0.0.4:7000)->
127.0.0.4:7000(127.0.0.4:62707) - SMALL_MESSAGES-5bc34c55 successfully
connected, version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-8] 2019-12-07 16:00:45,593
InboundConnectionInitiator.java:450 - 127.0.0.1:7000(127.0.0.2:62710)->
127.0.0.2:7000-SMALL_MESSAGES-9e€9a00e9 connection established,
version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-7] 2019-12-07 16:00:45,593
InboundConnectionInitiator.java:450 - 127.0.0.3:7000(127.0.0.2:62709)->
127.0.0.2:7000-SMALL_MESSAGES-e037c87e connection established,
version = 12, framing = CRC, encryption = disabled
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This output shows connections initiated from node2 to the other nodes in the cluster
to write replicas, and the corresponding responses. If you examine the debug.log,
you'll see similar information, but not the details of the specific query that was exe-
cuted.

Full Query Logging

If you want more detail on exact CQL query strings that are used by client applica-
tions, use the full query logging feature introduced in Cassandra 4.0. The full query
log is a binary log designed to be extremely fast and add the minimum possible over-
head to your queries. Full query logging is also useful for live traffic capture and
replay.

To enable full query logging on a node, create a directory to hold the logs and then set
the full_query_logging_options in the cassandra.yaml file to point to the directory:

full_query_logging_options:
log_dir: /var/tmp/fql_logs

Other configuration options allow you to control how often the log is rolled over to a
new file (hourly by default), specify a command used to archive the log files, and set a
limit for full query logs. The full query log will not be enabled until you run the node
tool enablefullquerylog command.

Cassandra provides a tool to read the logs under the tools/bin/fqltool directory. Here’s
an example of what the output looks like after running some simple queries:

$ tools/bin/fqltool dump /var/tmp/fql_logs

Type: single-query

Query start time: 1575842591188

Protocol version: 4

Generated timestamp:-9223372036854775808

Generated nowInSeconds:1575842591

Query: INSERT INTO reservation.reservations_by_confirmation
(confirm_number, hotel_id, start_date, end_date, room_number,
guest_id) VALUES ('RS2GOZ', 'NY456', '2020-06-08', '2020-06-10', 111,
1b4d86f4-ccff-4256-a63d-45c905df2677);

Values:

Type: single-query

Query start time: 1575842597849

Protocol version: 4

Generated timestamp:-9223372036854775808

Generated nowInSeconds:1575842597

Query: SELECT * FROM reservation.reservations_by_confirmation ;
Values:

Once you're done collecting full query logs, run the nodetool disablefullquerylog
command.
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Summary

In this chapter, you learned ways you can monitor and manage your Cassandra clus-
ter. In particular, you learned the rich variety of operations Cassandra makes available
via JMX to the MBean server. You also learned how to use nodetool, virtual tables,
metrics, and logs to view what’s happening in your Cassandra cluster. You are now
ready to learn how to perform routine maintenance tasks to help keep your Cassan-
dra cluster healthy.
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CHAPTER 12
Maintenance

In this chapter, we look at some things you can do to keep your Cassandra cluster
healthy. Our goal here is to provide an overview of the various maintenance tasks
available. Because the specific procedures for these tasks tend to change slightly from
release to release, youw'll want to make sure to consult the Cassandra documentation
for the release you're using to make sure you're not missing any new steps.

Let’s put our operations hats on and get started!

Health Check

There are some basic things that you’ll want to look for to ensure that nodes in your
cluster are healthy:

o Use nodetool status to make sure all of the nodes are up and reporting normal
status. Check the load on column for each node to make sure the cluster is well
balanced. An uneven number of nodes per rack can lead to an imbalanced clus-
ter.

o Check nodetool tpstats on your nodes for dropped messages, especially muta-
tions, as this indicates that data writes may be lost. A growing number of blocked
flush writers indicates the node is ingesting data into memory faster than it can
be flushed to disk. Both of these conditions can indicate that Cassandra is having
trouble keeping up with the load. As is usual with databases, once these problems
begin, they tend to continue in a downward spiral. Three things that can improve
the situation are a decreased load, scaling up (adding more hardware), or scaling
out (adding another node and rebalancing).

If these checks indicate issues, you may need to dig deeper to get more information
about what is going on:
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+ Check the logs to see that nothing is reporting at ERROR or WARN level (e.g., an
OutOfMemoryError). Cassandra generates warning logs when it detects bad or
obsolete configuration settings, operations that did not complete successfully,
and memory or data storage issues.

« Review the configuration of the cassandra.yaml and cassandra-env.sh files for
your Cassandra nodes to make sure that they match your intended settings, espe-
cially those for JVM and network configuration.

o Verify keyspace settings to make sure they match the topology of your cluster,
and the table configuration to make sure each table reflects your intended com-
paction strategy and other settings. For example, a frequent configuration error is
to forget to update keyspace replication strategies when adding a new data center.

« Beyond the health of your Cassandra nodes, it is always helpful to have a sense of
the overall health and configuration of your system, including ensuring network
connectivity and that Network Time Protocol (NTP) servers are functioning cor-
rectly.

These are a few of the most important things that experienced Cassandra operators
have learned to look for, and the Cassandra documentation on locating unhealthy
nodes may also be helpful. As you gain experience with your own deployments, you
can augment these with additional health checks that are appropriate for your own
environment.

Common Maintenance Tasks

There are a few basic tasks that you’ll need to perform as part of sequences involving
other more impactful tasks. For example, it makes sense to take a snapshot only after
you've performed a flush. We'll introduce a few such tasks in this section so we can
reference them in the rest of the chapter.

Many of the tasks we look at in this chapter work somewhat differently depending on
whether youre using virtual nodes (vnodes) or single-token nodes. Because vnodes
are the default, we'll focus primarily on maintenance of those nodes, but provide
pointers if you're using single token nodes.

Flush

To force Cassandra to write data from its memtables to SSTables on the filesystem,
you use the nodetool flush command:

$ nodetool flush

If you check the debug.log file, you'll see a series of output statements similar to this,
one per table stored on the node:
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DEBUG [RMI TCP Connection(2)-127.0.0.1] 2019-12-09 17:43:19,958
StorageService.java:3751 - Forcing flush on keyspace reservation,
CF reservations_by_confirmation
You can selectively flush specific keyspaces or even specific tables within a keyspace
by naming them on the command line:

$ nodetool flush reservation
$ nodetool flush reservation reservations_by_hotel_date

Running flush also allows Cassandra to clear commitlog segments, as the data has
been written to SSTables.

The nodetool drain command is similar to flush. This command actually performs
a flush and then directs Cassandra to stop listening to commands from the client and
other nodes. The drain command is typically used as part of an orderly shutdown of
a Cassandra node and helps the node startup to run more quickly, as there is no com-
mitlog to replay.

Cleanup

The nodetool cleanup command is a special case of compaction. It scans all of the
data on a node and discards any data that is no longer owned by the node. You might
ask why a node would have any data that it doesn’t own.

Say that you've had a cluster running for some time, and you want to change the rep-
lication factor or the replication strategy. If you decrease the number of replicas for
any data center, then there will be nodes in that data center that no longer serve as
replicas for secondary ranges.

Or perhaps you've added a node to a cluster and reduced the size of the token
range(s) owned by each node. Then each node may contain data from portions of
token ranges it no longer owns.

In both of these cases, Cassandra does not immediately delete the excess data, in case
a node goes down while you're in the middle of your maintenance. Instead, the nor-
mal compaction processes will eventually discard this data.

However, you may wish to reclaim the disk space used by this excess data more
quickly to reduce the strain on your cluster. To do this, you can use the nodetool
cleanup command. To complete as quickly as possible, you can allocate all compac-
tion threads to the cleanup by adding the -j © option. As with the flush command,
you can select to clean up specific keyspaces and tables.

Repair

As you learned in Chapter 6, Cassandra’s tuneable consistency means that it is possi-
ble for nodes in a cluster to get out of sync over time. For example, writes at consis-
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tency levels less than ALL may succeed even if some of the nodes don’t respond,
especially when a cluster is under heavy load. It’s also possible for a node to miss
mutations if it is down or unreachable for longer than the time window for which
hints are stored. The result is that different replicas for a different partition may have
different versions of your data.

This is especially challenging when the missed mutations are deletions. A node that is
down when the deletion occurs and remains offline for longer than the gc_grace_sec
onds defined for the table in question can “resurrect” the data when it is brought back
online.

Fortunately, Cassandra provides multiple anti-entropy mechanisms to help mitigate
against inconsistency. You've already learned how read repair and higher consistency
levels on reads can be used to increase consistency. The final key element of Cassan-
dra’s arsenal is the anti-entropy repair or manual repair, which you perform using the
nodetool repair command.

You can execute a basic repair as follows:

$ nodetool repair

[2019-12-09 17:53:01,741] Starting repair command #1 (6aa75460-1ae7-1lea-
b444-8742f4fb26dc), repairing keyspace reservation with repair options (paral-
lelism: parallel, primary range: false, incremental: true, job threads: 1,
ColumnFamilies: [], dataCenters: [], hosts: [], previewKind: NONE, # of ranges:
768, pull repair: false, force repair: false, optimise streams: false)

[2019-12-09 17:53:06,213] Repair completed successfully

[2019-12-09 17:53:06,219] Repair command #1 finished in 4 seconds

[2019-12-09 17:53:06,231] Replication factor is 1. No repair is needed for key-
space 'system_auth'

[2019-12-09 17:53:06,240] Starting repair command #2 (6d56bcf0-1ae7-1lea-
b444-8742f4fb26dc), repairing keyspace system_traces with repair options (paral-
lelism: parallel, primary range: false, incremental: true, job threads: 1,
ColumnFamilies: [], dataCenters: [], hosts: [], previewKind: NONE, # of ranges:
519, pull repair: false, force repair: false, optimise streams: false)

You'll be able to see additional logging statements in the debug log referencing the
same repair session identifiers. The output of these logs will vary, of course, based on
the current state of your cluster. This particular command iterates over all of the key-
spaces and tables in the cluster, repairing each one. You can also specify specific key-
spaces and even one or more specific tables to repair via the syntax: nodetool repair
<keyspace> {<table(s)>}; for example, nodetool repair reservation reserva
tions_by_hotel_date.
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Limiting Repair Scope

The repair command can be restricted to run in the local data cen-
ter via the -local option (which you may also specify via the
longer form --1in-local-dc), or in a named data center via the -dc
<name> option (or - -in-dc <name>).

Let’s look at what is happening behind the scenes when you run nodetool repair on
a node. The node on which the command is run serves as the coordinator node for
the request. The org.apache.cassandra.service.ActiveRepairService class is
responsible for managing repairs on the coordinator node and processes the incom-
ing request. The ActiveRepairService first executes a read-only version of a major
compaction, also known as a validation compaction. During a validation compaction,
the node examines its local data store and creates Merkle trees containing hash values
representing the data in one of the tables under repair. This part of the process is gen-
erally expensive in terms of disk I/O and memory usage.

Next, the node initiates a TreeRequest/TreeResponse conversation to exchange Mer-
kle trees with neighboring nodes. If the trees from the different nodes don’t match,
they have to be reconciled in order to determine the latest data values they should all
be set to. If any differences are found, the nodes stream data to each other for the
ranges that don't agree. When a node receives data for repair, it stores it in new
SSTables.

Note that if you have a lot of data in a table, the resolution of Merkle trees will not go
down to the individual partition. For example, in a node with a million partitions,
each leaf node of the Merkle tree will represent about 30 partitions. Each of these par-
titions will have to be streamed together even if only a single partition requires repair.
This behavior is known as overstreaming. For this reason, the streaming part of the
process is generally expensive in terms of network I/O, and can result in duplicate
storage of data that did not actually need repair.

This process is repeated on each node, for each included keyspace and table, until all
of the token ranges in the cluster have been repaired.

Although repair can be an expensive operation, Cassandra provides several options to
give you flexibility in how the work is spread out.

Full repair, incremental repair, and anti-compaction

In Cassandra releases prior to 2.1, performing a repair meant that all SSTables in a
node were examined; this is now referred to as a full repair. The 2.1 release intro-
duced incremental repair. With incremental repairs, data that has been repaired is
separated from data that has not been repaired, a process known as anti-compaction.
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This incremental approach improves the performance of the repair process, since
there are fewer SSTables to search on each repair. Also the reduced search means that
fewer partitions are in scope, leading to smaller Merkle trees and less overstreaming.

Incremental Repair Improvements

Alex Dejanovski’s excellent blog post, “Incremental Repair
Improvements in Cassandra 47, explains the causes of overstream-
ing in some detail, including why the process of anti-compaction
was not enough by itself to handle these issues in earlier releases,
and how incremental repairs have been improved in the 4.0 release
to be more reliable and efficient.

Cassandra adds a bit of metadata to each SSTable file in order to keep track of its
repair status. You can view the repair time by using the sstablemetadata tool. For
example, examining an SSTable for your reservation data indicates the data it con-
tains has not been repaired:

$ tools/bin/sstablemetadata data/data/reservation/reservations_by_confirmation-
3e8e00601a0211ea82980de3aa109b1d/na-1-big-Data.db

SSTable: data/data/reservation/reservations_by_confirmation-
3e8e00601a0211ea82980de3aa109b1d/na-1-big

Partitioner: org.apache.cassandra.dht.Murmur3Partitioner

Bloom Filter FP chance: 0.01

SSTable Level: 0
Repaired at: 1575939181899 (12/09/2019 17:53:01)
Pending repair: --

Transitioning to Incremental Repair

Incremental repair became the default in the 2.2 release, and you
must use the -full option to request a full repair. If you are using a
version of Cassandra prior to 2.2, make sure to consult the release
documentation for any additional steps to prepare your cluster for
incremental repair.

Sequential and parallel repair

A sequential repair works on repairing one node at a time, while parallel repair works
on repairing multiple nodes with the same data simultaneously. Sequential repair was
the default for releases through 2.1, and parallel repair became the default in the 2.2
release.

When a sequential repair is initiated using the -seq option, a snapshot of data is
taken on the coordinator node and each replica node, and the snapshots are used to
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construct Merkle trees. The repairs are performed between the coordinator node and
each replica in sequence. During sequential repairs, Cassandras dynamic snitch helps
maintain performance. Because replicas that aren’t actively involved in the current
repair are able to respond more quickly to requests, the dynamic snitch will tend to
route requests to these nodes.

A parallel repair is initiated using the -par option. In a parallel repair, all replicas are
involved in repair simultaneously, and no snapshots are needed. Parallel repair places
a more intensive load on the cluster than sequential repair, but also allows the repair
to complete more quickly.

Partitioner range repair

When you run repair on a node, by default Cassandra repairs all of the token ranges
for which the node is a replica. This is appropriate for the situation where you have a
single node that is in need of repair—for example, a node that has been down and is
being prepared to bring back online.

However, if you are doing regular repairs for preventative maintenance, as recom-
mended, repairing all of the token ranges for each node means that you will be doing
multiple repairs over each range. For this reason, the nodetool repair command
provides the -pr option, which allows you to repair only the primary token range or
partitioner range. If you repair each nodes primary range, the whole ring will be
repaired.

Subrange repair

Even with the -pr option, a repair can still be an expensive operation, as the primary
range of a node can represent a large amount of data. For this reason, Cassandra sup-
ports the ability to repair by breaking the token range of a node into smaller chunks,
a process known as subrange repair.

Subrange repair also addresses the issue of overstreaming. Because the full resolution
of a Merkle tree is applied to a smaller range, Cassandra can precisely identify indi-
vidual rows that need repair.

To initiate a subrange repair operation, you will need the start token (-st) and end
token (-et) of the range to be repaired:

$ nodetool repair -st <start token> -et <end token>

You can obtain the assigned token ranges for your cluster using the nodetool ring
command. You can also obtain your cluster’s token ranges programmatically via the
DataStax Cassandra drivers. For example, the Java driver provides operations to get
the token ranges for a given host and keyspace, and to split a token range into sub-
ranges. You could use these operations to automate a repair request for each sub-
range, or just print out the ranges, as shown in this example:
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for (TokenRange tokenRange :
cqlSession.getMetadata().getTokenRanges())

{
for (TokenRange splitRange : tokenRange.splitEvenly(SPLIT_SIZE))
{
System.out.println("Start: " + splitRange.getStart().toString() +
", End: " + splitRange.getEnd().toString());
}
}

However, it's much more common to use one of the available tools, such as Reaper or
the OpsCenter Repair Service, rather than attempting to implement your own sub-
range repair scheme.

Reaper: A Tool For Repairs

Cassandra Reaper, an automated repair tool created by Spotity, has a web-based user
interface added by The Last Pickle. Reaper orchestrates repairs across one or more
clusters, and lets you pause, resume, or cancel repairs and track repair status. It uses a
subrange repair approach as well as a backpressure mechanism to optimize repair
performance. It uses a pluggable storage approach for its own record keeping, allow-
ing you to store state in memory, the Java-based H2 database, Postgres, or Cassandra.

Best practices for repair

In practice, selecting and executing the proper repair strategy is one of the more diffi-
cult tasks in maintaining a Cassandra cluster. Here’s a checklist to help guide your
decision making:

Repair frequency
Remember that the data consistency your applications will observe depends on
the read and write consistency levels you use, the gc_grace_seconds defined for
each table, and the repair strategy you put in place. If you're willing to use read/
write consistency levels that don’t guarantee immediate consistency, you'll want
to do more frequent repairs.

Repair scheduling
Minimize the impact of repairs on your application by scheduling them at off-
peak times for your application. Alternatively, spread the process out by using
subrange repairs, or stagger repairs for various keyspaces and tables at different
start times. Even better, use one of the tools mentioned above to schedule your
repairs.
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Operations requiring repair
Don't forget that some operations will require a full repair, such as changing the
snitch on a cluster, changing the replication factor on a keyspace, or recovering a
node that has been down.

Avoiding conflicting repairs
Cassandra does not allow multiple simultaneous repairs over a given token
range, as repair by definition involves interactions between nodes. For this rea-
son, it's best to manage repairs from a single location external to the cluster,
rather than trying to implement automated processes on each node to repair
their locally owned ranges.

Tracking Repair Status

Until a more robust repair status mechanism is put in place (for
example, see the JIRA issue CASSANDRA-10302), you can moni-
tor repairs in progress using nodetool netstats.

Rebuilding Indexes

If youre using secondary indexes, they can get out of sync just like any other data.
While it is true that Cassandra stores secondary indexes as tables behind the scenes,
the index tables only reference values stored on the local node. For this reason, Cas-
sandra’s repair mechanisms aren’t helpful for keeping indexes up to date.

Because secondary indexes can’t be repaired and there is no simple way to check their
validity, Cassandra provides the ability to rebuild them from scratch using nodetool’s
rebuild_index command. It is a good idea to rebuild an index after repairing the
table on which it is based, as the columns on which the index is based could have
been represented among the values repaired. As with repair, remember that rebuild-
ing indexes is a CPU- and I/O-intensive procedure.

Moving Tokens

If you have configured your cluster to use vnodes (which has been the default config-
uration since the 2.0. release), Cassandra handles the assignment of token ranges to
each of the nodes in your cluster. This includes changing these assignments when
nodes are added or removed from the cluster. However, if youre using single-token
nodes, you'll need to reconfigure the tokens manually.

To do this, you first need to recalculate the token ranges for each node using the tech-
nique described in Chapter 10. Then you use the nodetool move command to assign
the ranges. The move command takes a single argument, which is the new start token
for the node:

Common Maintenance Tasks | 283


https://issues.apache.org/jira/browse/CASSANDRA-10302

$ nodetool move 3074457345618258600

After adjusting the token of each node, complete the process by running nodetool
cleanup on each node.

Adding Nodes

You learned in Chapter 10 how to add a node using the Cassandra Cluster Manager
(cem), which was a great way for you to get started quickly. Now let’s dig a little deeper
to discuss some of the motivations and procedures for adding new nodes and data
centers.

Adding Nodes to an Existing Data Center

If your application is successful, sooner or later you'll need to add nodes to your clus-
ter. This might be as part of a planned increase in capacity. Alternatively, it might be
in reaction to something you've observed in a health check, such as running low on
storage space, nodes that are experiencing high memory and CPU utilization, or
increasing read and write latencies.

Whatever the motivation for your expansion, youw'll start by installing and configur-
ing Cassandra on the machines that will host the new nodes. The process is similar to
what we outlined in Chapter 10, but keep the following in mind:

o The Cassandra version must be the same as the existing nodes in the cluster. If
you want to do a version upgrade, upgrade the existing nodes to the new version
first and then add new nodes.

« You'll want to use the same configuration values as you did for other nodes in
files such as cassandra.yaml and cassandra-env.sh, including the cluster_name,
dynamic_snitch, and partitioner.

 Use the same seed nodes as in the other nodes. Typically, the new nodes you add
won't be seed nodes, so there is no need to add the new nodes to the seeds list in
your previously existing nodes.

o If you have multiple racks in your configuration, it'’s a good idea to add nodes to
each rack at the same time to keep the number of nodes in each rack balanced.
For some reason, this always reminds us of the rule in the classic board game
Monopoly that requires houses to be spread evenly across properties.

« If you're using single-token nodes, you’ll have to manually calculate the token
range that will be assigned to each node, as you learned in “Moving Tokens” on
page 283. A simple and effective way to keep the cluster balanced is to divide
each token range in half, doubling the number of nodes in the cluster.
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 In most cases, youll want to configure your new nodes to begin bootstrapping
immediately—that is, claiming token ranges and streaming the data for those
ranges from other nodes. This is controlled by the autobootstrap property,
which defaults to true. You can add this to your cassandra.yaml file to explicitly
enable or disable auto bootstrapping.

Once the nodes are configured, you can start them, and use nodetool status to
determine when they are fully initialized.

You can also watch the progress of a bootstrap operation on a node by running the
nodetool bootstrap command. If you've started a node with auto bootstrapping dis-
abled, you can also kick off bootstrapping remotely at the time of your choosing with
the command nodetool bootstrap resume.

After all new nodes are running, make sure to run a nodetool cleanup on each of
the previously existing nodes to clear out data that is no longer managed by those
nodes.

Adding a Data Center to a Cluster

There are several reasons you might want to add an entirely new data center to your
cluster. For example, let’s say that you are deploying your application to a new data
center in order to reduce network latency for clients in a new market. Or perhaps you
need an active-active configuration to support disaster recovery requirements for
your application. A third popular use case is to create a separate data center that can
be used for analytics without impacting online customer transactions.

Let’s explore how you can extend your cluster to a new data center. The same basic
steps for adding a node in an existing data center apply to adding nodes in a new data
center. Here are a few additional things you’ll want to consider as you configure the
cassandra.yaml file for each node:

o Make sure to configure an appropriate snitch for your deployment environment
using the endpoint_snitch property and any configuration files associated with
the snitch, for example, the cassandra-rackdc.properties file for the GossipingPro
pertyFileSnitch. Hopefully you planned for this when first setting up your
cluster, but if not, you will need to change the snitch in the initial data center. If
you do need to change the snitch, you'll first want to change it on nodes in the
existing data center and perform a repair before adding the new data center.

o Select a couple of the nodes in the new data center to be seeds, and configure the
seeds property in the other nodes accordingly. Each data center should have its
own seeds independent of the other data centers.
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o The new data center is not required to have the same token range configuration
as any existing data centers within the cluster. You can select a different number
of vnodes or use single-token nodes if so desired.

o Disable auto bootstrapping by finding (or adding) the autobootstrap option and
setting it to false. This will prevent your new nodes from attempting to stream
data before you're ready.

After all of the nodes in the new data center have been brought online, you then con-
figure replication options for the NetworkTopologyStrategy for all keyspaces that
you wish to replicate to the new data center.

For example, to extend the reservation keyspace into an additional data center, you
might execute the command:

cqlsh> ALTER KEYSPACE reservation WITH REPLICATION =
{'class' : 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 3};

Note that the NetworkTopologyStrategy allows you to specify a different number of
replicas for each data center.

Next, run the nodetool rebuild command on each node in the new data center. For
example, the following command causes a node to rebuild its data by streaming from
data center DC1:

$ nodetool rebuild -- DC1

You can rebuild multiple nodes in parallel if desired; just remember to consider the
impact on your cluster before doing this. The nodetool abortrebuild command can
be used to stop a rebuild that is in progress.

Once the rebuilding is complete, your new data center is ready to use.

Don't Forget Your Clients

You'll also want to consider how adding another data center affects
your existing clients and their usage of LOCAL_* and EACH_* consis-
~ tency levels. For example, if you have clients using the QUORUM con-
sistency level for reads or writes, queries that used to be confined to
a single data center will now involve multiple data centers. You may
wish to switch to LOCAL_QUORUM to limit latency, or to EACH_QUORUM
to ensure strong consistency in each data center. To maintain high
availability from your clients, make sure they have designated the
existing data center as the local data center, before changing the
keyspace replication factor to extend to the new data center.
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Handling Node Failure

From time to time, a Cassandra node may fail. Failure can occur for a variety of rea-
sons, including hardware failure, a crashed Cassandra process, or a virtual machine
that has been stopped or destroyed. A node that is experiencing network connectivity
issues may be marked as failed in gossip and reported as down in nodetool status,
although it may come back online if connectivity improves.

Taking Nodes Offline

If you wish to investigate issues with a node that is still running but
not behaving normally, use the nodetool disablegossip and disa
blebinary commands to disable gossip and the CQL protocol,
respectively. This will make the node appear down without actually
killing it. Note that the node will still be accessible via JMX, so you
can use other nodetool commands to diagnose and fix issues, before
re-enabling via nodetool enablegossip and enablebinary. Simi-
larly, the nodetool commands enablehandoff, disablehandoff,
enablehintsfordc, and disablehintsfordc give you the ability to
control a node’s participation in hinted handoftf.

In this section, we’ll examine how to repair or replace failed nodes, as well as how to
remove nodes from a cluster gracefully.

Repairing Failed Nodes

The first thing to do when you observe there is a failed node is to try to determine
how long the node has been down. Here are some quick rules of thumb to know if
repair or replacement may be required:

o If the node has been down for less than the hints delivery window specified by
the max_hint_window_in_ms property, the hinted handoff mechanism should be
able to recover the node. Restart the node and see whether it is able to recover.
You can watch the node’s logs or track its progress using nodetool status.

o If the node has been down for more than the hints window and less than the
repair window defined lowest value of gc_grace_seconds for any of its contained
tables, then restart the node. If it comes up successfully, run a nodetool repatr.

o If the node has been down for longer than the repair window; it should be rebuilt
or replaced to avoid tombstone resurrection.
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Recovering from disk failure

A disk failure is one form of hardware failure from which a node may be able to
recover. If your node is configured to use Cassandra with multiple disks (JBOD), the
disk_failure_policy setting determines what action is taken when a disk failure
occurs, and how you may be able to detect the failure:

o If the policy is set to the default (stop), the node will stop gossiping and accept-
ing queries, which will cause it to appear as a downed node in nodetool status.
You can still connect to the node via JMX.

o The policy setting stop_paranoid is similar to stop, with the addition that if any
failures are detected on startup, the node will shut down the JVM.

o If the policy is set to die, the JVM exits and the node will appear as a downed
node in nodetool status.

o If the policy is set to ignore, there’s no immediate way to detect the failure.

o If the policy is set to best_effort, Cassandra continues to operate using the
other disks, but a WARN log entry is written, which can be detected if you are
using a log aggregation tool. Alternatively, you can use a JMX monitoring tool to
monitor the state of the org.apache.cassandra.db.BlacklistedDirectoriesM
Bean, which lists the directories for which the node has recorded failures.

Once you've detected a disk failure, you may want to try restarting the Cassandra
process or rebooting the server. But if the failure persists, you'll have to replace the
disk and delete the contents of the data/system directory in the remaining disks so
that when you restart the node, it comes up in a consistent state. See the DataStax
documentation for full instructions on recovering the node.

Replacing Nodes

If you've determined that a node can’'t be repaired or recovered after hardware failure,
you will most likely want to replace it to keep your cluster balanced and maintain the
same capacity.

While you could replace a node by removing the old node (as in the next section) and
adding a new node, this is not a very efficient approach. Removing and then adding
nodes results in excess streaming of data.

The more efficient approach is to add a node that takes over the token ranges of an
existing node. To do this, you follow the previously outlined procedure for adding a
node, with one addition. Edit the jvm.options file for the new node to add the follow-
ing JVM option (where <address> is the IP address or hostname of the node that is
being replaced):

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address_first_boot=<address>"
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You can monitor the progress of bootstrapping by running nodetool netstats on
the replacement node. After the replacement node finishes bootstrapping, you can
remove this option, as it is not required for any subsequent restarts of the node.

If you're using the PropertyFileSnitch, you'll need to add the address of your new
node to the properties file on each node and do a rolling restart of the nodes in your
cluster. It is reccommended that you wait 72 hours before removing the address of the
old node to avoid confusing the gossiper.

Replacing a Seed Node

If the node you're replacing is a seed node, select an existing non-
seed node to promote to a seed node. You'll need to add the pro-
moted seed node to the seeds property in the cassandra.yaml file of
existing nodes.

Typically, these will be nodes in the same data center, assuming you
follow the recommendation of using a different seed list per data
center. In this way, the new node you create will be a nonseed node
and can bootstrap normally.

There are some additional details if you are using a package installation of Cassandra;
consult the documentation for your specific release for additional details.

Removing Nodes

If you decide not to replace a downed node right away, or just want to shrink the size
of your cluster, you'll need to remove or decommission the node. The proper techni-
que for removal depends on whether the node being removed is online or can be
brought online. We'll look at three techniques, in order of preference: decommission,
remove, and assassinate.

Decommissioning a node

If the node is reporting as up, you decommission the node. Decommissioning a node
means pulling it out of service. When you execute the nodetool decommission com-
mand, youre calling the decommission() operation on Cassandras StorageService
class. This operation assigns the token ranges that the node was responsible for to
other nodes and then streams the data to those nodes. This is effectively the opposite
of the bootstrapping operation.

If you still have access to the cluster created using ccm in Chapter 10, you can perform
this operation with the command ccm node4 nodetool decommission. For other
commands in this section we'll omit the ccm <node> part of the command for sim-
plicity.
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While the decommission is running, the node will report that it is in a leaving state in
nodetool status via the code UL (up, leaving). You can check this in another termi-
nal window:

$ nodetool status

Datacenter: datacenterl

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.1 712 KiB 256 76.3% 9019859a-... rackl
UN 127.0.0.2 773.07 KiB 256 74.0% 5650bfad-... rackil
UN 127.0.0.3 770.18 KiB 256 72.3% 158a78c2-... rack1l
UL 127.0.0.4 140.69 KiB 256 77 .4% 073da652-... rackl

You can examine the 