
W H I T E PA P E R

Five Steps to an Awesome Data Model

Data Modeling in
Apache Cassandra™

2

Data Modeling in Apache Cassandra™

CONTENTS
Introduction � 3

Data Modeling in Cassandra � 3
Why data modeling is critical 3
Differences between Cassandra and relational databases 3
How Cassandra stores data 4
High-level goals for a Cassandra data model 5

Five Steps to an Awesome Data Model � 5
A hypothetical application 5
Step 1: Build the application workflow 6
Step 2: Model the queries required by the application 7
Step 3: Create the tables 8
Chebotko diagrams 9
Denormalization is expected 10
Step 4: Get the primary key right 11
Creating unique keys 11
Be careful with custom naming schemes 11
Step 5: Use data types effectively 12
Collections in Cassandra 12
User-defined data types 13

Things to Keep in Mind � 14
Thinking in relational terms can cause problems 14
Secondary indexes 15
Materialized views 16
Using batches effectively 16

Learning More � 17

Summary � 17

References � 18

About DataStax � 19

3

Data Modeling in Apache Cassandra™

INTRODUCTION
For web-scale applications, Apache Cassandra is a favorite choice among architects and
developers� It offers many advantages including performance, scalability, continuous
availability, geographic distribution, and ease of management� Today, Cassandra is among
the most successful NoSQL databases� It is used in countless applications from online
retail to internet portals to time-series databases to mobile application backends�

While Cassandra is powerful and easy to use, having a well-designed data model is essential to meeting application
performance and scalability goals� In this paper, aimed at technical people experienced with relational databases, we
discuss five useful steps to realizing a high-quality data model for your Cassandra application�

DATA MODELING IN CASSANDRA

Why data modeling is critical
Having the correct data model is important for any application, but it becomes especially critical as applications scale�
An application may work with thousands of records and a few hundred concurrent users, but what happens when
record and user counts are in millions or billions?

Regardless of the database, if the data model isn’t right, or doesn’t suit the underlying database architecture, users can
experience poor performance, downtime, and even data loss or data corruption� Fixing a poorly designed data model
after an application is in production is an experience that nobody wants to go through� It’s better to take some time
upfront and use a proven methodology to design a data model that will be scalable, extensible, and maintainable over
the application lifecycle�

Differences between Cassandra and relational databases
Most readers will be familiar with relational databases such as Oracle®, MySQL®, and PostgreSQL®� Before jumping into
data modeling with Cassandra, it’s helpful to explain a few differences between Cassandra and relational databases�

 / In Cassandra, denormalization is expected – With relational databases, designers are usually encouraged to
store data in a normalizedi form to save disk space and ensure data integrity� In Cassandra, storing the same data
redundantly in multiple tables is not only expected, but it also tends to be a feature of a good data model�

 / In Cassandra, writes are (almost) free – Owing to Cassandra’s architecture, writes are shockingly fast compared
to relational databases� Write latency may be in the hundreds of microseconds and large production clusters can
support millions of writes-per-second�ii

 / No joins – Relational database users assume that they can reference fields from multiple tables in a single query
joining tables on the fly� With Cassandra, this functionality doesn’t exist, so developers need to think about how
they will structure their data model to provide equivalent functionality�

4

Data Modeling in Apache Cassandra™

 / Developers need to think about consistency – Relational databases are ACID compliant (Atomicity, Consistency,
Isolation, Durability), characteristics that help guarantee data validity with multiple reads and writes� Cassandra
supports the notion of tunable consistency, balancing between Consistency, Availability, and Partition Tolerance
(CAP)�iii Cassandra gives developers the flexibility to manage trade-offs between data consistency, availability,
and application performance when formulating queries�

 / Indexing – In a relational database, queries can be optimized by simply creating an index on a field� While
secondary indexes exist in Cassandra, they are not a “silver bullet” as they are in a relational database
management system (RDBMS)� In Cassandra, tables are usually designed to support specific queries, and
secondary indexes are useful only in specific circumstances�

How Cassandra stores data
Understanding how Cassandra stores data is essential to developing a good data model� Readers wishing to get a
better understanding of Cassandra’s internal architecture can read the DataStax Apache Cassandra™ Architecture
whitepaper available at https://www�datastax�com/resources/whitepapers/apache-cassandra-architecture�

Cassandra clusters have multiple nodes running in local data centers or public clouds� Data is typically stored
redundantly across nodes according to a configurable replication factor so that the database continues to operate even
when nodes are down or unreachable�

Tables in Cassandra are much like RDBMS tables� Physical records in the table are spread across the cluster at a
location determined by a partition key� The partition key is hashed to a 64-bit token that identifies the Cassandra node
where data and replicas are stored�iv The Cassandra cluster is conceptually represented as a ring, as shown in Figure 1,
where each cluster node is responsible for storing tokens in a range�

Queries that look up records based on the partition key are extremely fast because Cassandra can immediately
determine the host holding required data using the partitioning function� Since clusters can potentially have hundreds
or even thousands of nodes, Cassandra can handle many simultaneous queries because queries and data are
distributed across cluster nodes�

Figure 1 – How Cassandra stores data

Partition keys can be single columns or can be composed of multiple columns� Cassandra also supports clustering
columns (discussed shortly) that control how data records are grouped and organized within each partition� Records in
Cassandra are stored as lists of key-value pairs where the column name is the key�

https://www.datastax.com/resources/whitepapers/apache-cassandra-architecture

5

Data Modeling in Apache Cassandra™

High-level goals for a Cassandra data model
 / Spread data evenly around the cluster – For Cassandra to work optimally, data should be spread as evenly as

possible across cluster nodes. Distributing data evenly depends on selecting a good partition key.

 / Minimize the number of partitions to read – When Cassandra reads data, it’s best to read from as few
partitions as possible since each partition potentially resides on a different cluster node. If a query involves
multiple partitions, the coordinator node responsible for the query needs to interact with many nodes, thereby
reducing performance.

 / Anticipate how data will grow, and think about potential bottlenecks in advance – A particular data model
might make sense when you have a few hundred transactions per user, but what would happen to performance
if there were millions of transactions per user? It’s a good idea to always “think big” when building data models
for Cassandra and avoid knowingly introducing bottlenecks.

FIVE STEPS TO AN AWESOME DATA MODEL

A hypothetical application
To illustrate how to build Cassandra applications, DataStax offers a reference application called KillrVideo,v a fictitious
company operating a video service like YouTube™�

Figure 2 – KillrVideo: Sample Cassandra Application

When discussing data modeling, it’s helpful to focus on a concrete example� In the sections that follow, data modeling
will be discussed in the context of the KillrVideo application�

In KillrVideo, users perform activities such as creating profiles, submitting, tagging, and sharing videos, searching for
and retrieving videos submitted by others, viewing them, rating them, and commenting on them� KillrVideo serves as a
useful example because it needs to operate at internet scale, supporting millions of users and transaction volumes that
would be all but impossible to achieve using a relational database�

6

Data Modeling in Apache Cassandra™

Step 1: Build the application workflow
When building applications using relational databases, developers often start with the data model, thinking
about the data items that need to be stored and how they relate to one another� With Cassandra, just the
opposite is recommended� The best practice is to start with the application workflow; an approach referred to as
“query-first design�”

Before thinking about how data will be stored, designers need to know what types of queries the database will need to
support� Figure 3 presents a simplified application workflow for KillrVideo�com�

User logs
into the site

1

Show basic
information

about the user

2

Show videos
added

by a user

3

Show video
ratings by

a user

4

Show comments
posted by

a user

5

Show a
video and its

details

8

Show
ratings for a

video

10

Show
comments
for a video

9

Search for
videos

by a tag

6

Show latest
videos added

to the site

7

Figure 3 – Simplified application workflow

The sequence of workflow steps matters because it helps us determine what data is available and required for each
query� For example, before we can show basic information about a user (step 2 above), a userid is required� The user
first needs to log in to the site (step 1) supplying an email address and password in exchange for the required userid�
A userid might also be obtained by searching for a video (steps 6 or 7), showing comments for a video (step 9), and
looking up details about the user that commented� Similarly, before the application can display details about a video
(step 8) the application needs a videoid obtained by selecting from a list of the latest videos (step 7) or by searching
videos by tag (step 6)�

7

Data Modeling in Apache Cassandra™

Step 2: Model the queries required by the application
Even at the design stage, developers can think through the sequence of tasks required, mock up what each screen will
look like, and decide what data will be required at each stage�

Figure 4 shows a simplified entity relationship diagram (ERD) for the KillrVideo application� The application needs to be
able to keep track of entities such as users, videos, and comments� Users can perform activities such as adding videos,
rating videos, and posting comments� Users can comment on multiple videos, and each video can have multiple user
comments associated, but there is only one owner of each video�

n n

m

n n

1

1

id

added_date

id

name

rating

rated_date

id

comment

timestamp

description

location

preview_date

tags

firstname

lastname

email

created_date

User

Comment

Video

posts

adds

rates

features

Figure 4 – KillrVideo: Entity relationship diagram (ERD) for KillrVideo

It’s a good idea to iterate between the application workflow and ERD, updating both as new data items and
relationships required by the application are identified� Once developers have a clear idea of the application workflow
and the key data objects required, it’s possible to start identifying the queries that the application needs to support� A
diagram showing key queries and how they relate to data domains is shown in Figure 5�

8

Data Modeling in Apache Cassandra™

Find a user by
an email

Find a user by
an id

User logs
into the site

Users

Ratings

Comments Videos

1

Find ratings by a user
(latest first)

Show video
ratings by a

user

4
Find ratings by a user
video (latest first)

Show
ratings for a

video

10

Show basic
information

about a user

2

Find comments by a
user (latest first)

Find comments by a
video (latest first)

Show comments
posted by a user

5

Show comments
for a video

9

Find videos by a
user (latest first)

Find videos
by a tag

Show videos
added by

a user

3

Search for
videos
by a tag

6

Find videos by
a date added
(latest first)

Show latest
videos added

to the site

7

Find a video by
an id

Show a
video and its

details

8

Figure 5 – Identify the queries required to support the application workflow

Step 3: Create the tables
The next step is to think about how tables should be structured to support queries required by the application� At this
stage, we are getting more concrete about how Cassandra will store data�

In Cassandra, tables can be grouped into two distinct categories:

 / Tables with single-row partitions – These types of tables have primary keys that are also partition keys. They
are used to store entities and are usually normalized. Users, comments, and videos are examples of entities in
our application. These tables should be named based on the entity for clarity (i.e., users or videos).

 / Tables with multi-row partitions – These types of tables have primary keys that are composed of partition and
clustering keys. They are used to store relationships and related entities. Remember that Cassandra doesn’t
support joins, so developers need to structure tables to support queries that relate to multiple data items. It’s a
good idea to give tables meaningful names so that people examining the schema can understand the purpose
of different tables (i.e., comments_by_user or videos_by_tag).

A Cassandra Query Language (CQL) schema for the single-row partition videos table is shown below� The videos table
includes columns, such as the user that uploaded the video, a description, details about where the video was taken, a
timestamp, and a preview_image� A video can have multiple associated tags, so we use a set data type in Cassandra
known as a collection (discussed shortly) to store a variable number of tags per record�

9

Data Modeling in Apache Cassandra™

A table with multi-row partitions supports the query that looks up the latest videos (step 7 in the workflow in Figure
3) is shown below�

The latest_videos table illustrates what is meant by “query-first design�” The application will need to query the most
recently uploaded videos every time a user visits the KillrVideo homepage, so this query needs to be very efficient�
On a global video sharing service, the latest dozen or so videos are almost guaranteed to have been uploaded on
the same day (or in some cases the day before)� The table stores a timestamp (indicating the precise upload time)
but rather than using the timestamp as a partition key, the developer stores a “yyyymmdd” value derived from the
timestamp uniquely representing the day that the video was uploaded� By making yyyymmdd the partition key, videos
uploaded on the same day will be stored in the same partition, making lookups fast and efficient�vi

Additional clustering columns (added_date and videoid) specify how records are grouped and ordered within each
partition� By designing the table in this fashion, queries will touch only one partition for the current day and possibly
another partition for the day before� There will be no need to sort, filter, or otherwise post-process query results� This
level of optimization and efficiency helps explain how Cassandra can support applications with enormous numbers of
queries over very large data sets�

Chebotko diagrams
A good tool for mapping the data model that supports an application is known as a Chebotko diagramvii shown in
Figure 6� While entity-relationship diagrams are useful in building a conceptual data model, a Chebotko diagram helps
develop the logical and physical data models required to support the application�

user_by_email
email
password
userid

1

Ktext
text
uuid

users
userid
firstname
lastname
email
created_date

Kuuid
text
text
text
timestamp

ratings_by_user
userid
rated_date
videoid
rating
authorid
name
preview_image_location

K
C
C

uuid
timestamp
uuid
int
uuid
text

text

email

videos_by_tag
tag
videoid
added_date
userid
name
preview_image_location

K
C

text
uuid
timestamp
uuid
text

text

latest_videos
yyyymmdd
added_date
videoid
userid
name
preview_image_location

K
C
C

text
timestamp
uuid
uuid
text

text

videos_by_user
userid
added_date
videoid
name
preview_image_location

K
C
C

uuid
timestamp
uuid
text

text

comments_by_user
userid
commentid
videoid
comment

K
C

uuid
timeuuid
uuid
text

comments_by_video
videoid
commentid
userid
comment

K
C

uuid
timeuuid
uuid
text

ratings_by_video
videoid
rated_date
userid
rating
added_date
authorid
name
preview_image_location

K
C
C

S
S
S
S

uuid
timestamp
uuid
int
timestamp
uuid
text

text

videos
videoid
userid
name
description
location
location_type
preview_image_location
tags
added_date

Kuuid
uuid
text
text
text
text

set<text>
timestamp

text

tag

videoid

userid

6

8

2 3 4 5

9 10

date

7

Figure 6 – Chebotko diagram showing how tables support queries for KillrVideo

10

Data Modeling in Apache Cassandra™

The Chebotko diagram captures the database schema, showing table names, partition key columns (K), clustering key
columns (C) and their ordering (ascending or descending), static columns (S), and regular columns with data types� The
tables are organized based on the application workflow to support specific workflow steps and application queries�
Let’s take a look at a couple of tables more closely�

During the sign-in process, a user provides an email address and password for authentication purposes� The user_by_

email table is optimized to quickly retrieve records by email and return the encrypted password for validation and the
userid required for downstream queries�

Next, we may need to retrieve all comments posted by the user� The comments_by_user table supports such a query
where we retrieve an ordered list of comments made by a logged-in user� Since comments will be retrieved “by
user,” the userid is defined as the partition key to ensure that comments made by the same user will always reside
in the same partition� The commentid column is defined as a clustering key� Since commentid is of type timeuuid (a
universally unique identifier generated based on a timestamp and node MAC address), it ensures both uniqueness and
ordering of rows in a partition� User comments will be stored and retrieved in descending order from the same partition
showing the most recent comments first� Since the application will need to display when a comment was made, the to

Timestamp() function can be used to convert the commentid stored as a timeuuid value to a timestamp as shown�

Denormalization is expected
People experienced with relational databases may be surprised by how data elements are stored redundantly across
tables� For example, in Figure 6, a pointer to the video preview image (preview_image_location) appears in six
different tables� There are limits to how many redundant copies we want to maintain, but remember that in Cassandra,
denormalization is expected and it is a good trade-off to achieve performance and scalability goals:

 / Modern storage is inexpensive. For small data items, it’s less of a concern to store data redundantly
than it once was.

 / Adding videos and generating preview images is a relatively infrequent activity in the application. There will
be thousands of queries that require the presence of a preview image for every query that inserts or updates
an image preview. It makes sense to optimize for the most frequent queries.

 / While it’s a small burden for the developer to synchronize data across six tables, remember that writes
in Cassandra are extremely fast, so there is a minimal performance penalty. If we can speed queries with
denormalization, some data redundancy is a small price to pay. Cassandra has a batch feature (discussed
shortly) that is useful when coordinating multiple writes to denormalized tables.

11

Data Modeling in Apache Cassandra™

Step 4: Get the primary key right
Tables in Cassandra have a primary key� The primary key is made up of a partition key, followed by one or more
optional clustering columns that control how rows are laid out in a Cassandra partition� Getting the primary key right for
each table is one of the most crucial aspects of designing a good data model�

In the latest_videos table, yyyymmdd is the partition key, and it is followed by two clustering columns, added_date and
videoid, ordered in a fashion that supports retrieving the latest videos�

A partition key in Cassandra can be made up of multiple columns� For example, if we were to have a query that finds
all videos based on a tag and location, we would need to use a composite partition key consisting of both the tag and
location as shown�

Creating unique keys
For most applications, rows stored in a table need unique identifiers� Good examples are customer IDs, order IDs,
and transaction IDs� If keys aren’t unique, it’s easy to accidentally over-write rows–disastrous for most applications�
Relational databases often use simple auto-incrementing integers to assign unique keys to records, but this approach
isn’t practical in a distributed system like Cassandra�

To address this problem of unique keys, Cassandra supports universally unique identifiersviii (UUIDs) as a native data
type� UUIDs are 128-bit numbers that are guaranteed to be unique within the scope of an application� Cassandra
supports two types of UUIDs� TIMEUUIDs (UUID version 1) factor details like the MAC address of the node generating
the UUID and embed a 60-bit timestamp to help guarantee uniqueness� Cassandra also supports random UUIDs (UUID
version 4)� UUIDs are represented in hexadecimal and look something like the following:

Using a UUID to identify data items that need to be unique is the best practice in Cassandra� For time-series data (a
series of readings from a sensor for example) a timestamp (another native data type in Cassandra) might also be used
and combined with a sensor_id to generate a unique composite key, but since a timestamp can always be extracted
from a TIMEUUID, using a TIMEUUID is also a good option�

Be careful with custom naming schemes
Some developers might prefer to devise their own naming schemes to make keys easier to understand� For example,
if a table stores retail locations in the United States, a designer might use a five-character key comprised of a two-
character state identifier and a three-digit store number within the state� Using “AZ003” to represent the third store in
Arizona is much easier to understand than “bddf5f6b-f1a2-4624-8005-07f8cd5456de”�

12

Data Modeling in Apache Cassandra™

As tempting as this is, be careful constructing unique business-friendly identifiers� What happens if the business opens
stores internationally? Is “AL001” in Alabama, Alberta, or Albania? What happens if the business starts opening kiosks,
and larger states suddenly have more than 1,000 outlets? What happens if the business acquires another retailer with
a different naming convention? Business-friendly identifiers are a fact of life in many applications, but it’s worth thinking
about whether the need for human-readable identifiers is worth the effort required to maintain them�

Step 5: Use data types effectively
So far, we’ve discussed tables and columns without paying much attention to the best choice of data type for each
column� Cassandra supports a wide variety of data types that will be familiar to most developers–BigInt, Blob,
Boolean, Decimal, Double, Float, Inet (IP addresses), Int, Text, VarChar, UUID, TIMEUUID, etc� Consider the fields
in the video table:

 / There may be millions of unique videos and users, so both are identified as a universally unique identifier
(UUID) a good practice for unique keys in Cassandra.

 / The name, description, location, and location_type are all UTF-8 strings, so they are described as type text
(essentially the same as a varchar).

 / The preview_image_location might be a blob, but in a global application, it’s more efficient to store a pointer
to an object store so that the application can leverage a content delivery network (CDN) to cache images.

 / The added_date is a date and time that doesn’t need to be unique, so we use the built-in timestamp type.

 / In the video tables, there can be multiple tags or keywords associated with each video, so we use a “set,” one
of Cassandra’s useful collection types.

Collections in Cassandra
When modeling the database, some developers might be tempted to store tags associated with videos in a separate
table� When the list of anticipated tags is small however, using a collection data type that stores tags inside the
database record can be more efficient� This simplifies the database design and reduces the number of tables required�

The five collection data types in Cassandra are:

 / Set – a group collection of unique values of the same data type.

 / List – an ordered collection of non-unique values of the same data type.

 / Map – a set of key-value pairs, where keys are unique, and both keys and values have associated data types.

 / Tuple – a fixed length list of non-unique values of different data types.

 / Nested collection – a collection (i.e., set, list, map, or tuple) that is nested inside of another collection.

13

Data Modeling in Apache Cassandra™

When defining a collection, the user needs to provide a data type for its elements� A simplified version of our videos
table is provided below for illustration�

A sample row in this table may look as shown:

CQL provides convenient syntax to insert, update, or delete items in collections� For example, a user can update the
record for “My Funny Cat Video” and add a tag “wet cat” as shown:

User-defined data types
Another data type in Cassandra that provides flexibility is a user-defined type (UDT)� UDTs can attach multiple data
fields—each named and typed—to a single column�

Let’s assume that the designers of KillrVideo decide to store an optional mailing address for each user� Rather than add
multiple address-related fields, an address type can be created and leveraged across multiple Cassandra tables�

The user-defined address type can now be included in the users table as shown� The frozen keyword is required to use
a UDT inside of a collection� It forces Cassandra to treat the address as a single value� Individual elements of a frozen
address cannot be updated individually; rather, the entire address must be overwritten�

14

Data Modeling in Apache Cassandra™

THINGS TO KEEP IN MIND

Thinking in relational terms can cause problems
On the surface, Cassandra’s Query Language (CQL) looks much like SQL but failing to consider how Cassandra stores
data can cause serious problems� Consider an example where we decide to partition our user community into groups�
We want to be able to retrieve information about all users that belong in a group as shown�

A good table structure to support such a query in Cassandra would use the groupname as a partition key so that
members of the same group reside on the same partition for fast lookup�

Someone with a relational database background might be tempted to normalize the database schema by creating
tables for users, groups, and user-group relationships as shown�

Now suppose there were 1,000 users in each group, and we wanted to perform the same query retrieving information
for all users in a group� In this normalized case, the application would need to read 1,002 partitions—first querying the
groups table to retrieve the group_description, then querying the user_groups table to retrieve all userids in the group�
After this, the users table needs to be queried for each of the 1,000 userids, each on a separate partition�

15

Data Modeling in Apache Cassandra™

Secondary indexes
Consider a table holding user accounts where a unique username identifies an account� The table structure below is
ideal for looking up users by username (the partition key)�

Now imagine that we need to generate a list of user accounts in a single country� Normally, a query like this would
require a full table scan� This is a horrible idea in Cassandra� Depending on the size of the table, a query like this may
be very expensive and may consume all the resources on the cluster�

One way to solve this problem is to create another table designed to support the new query, with country designated
as the partition key and username as the clustering key� However, such a solution is still problematic because country is
a low-cardinality column� As our database scales, we may end up with millions of users in the same country, causing the
partition for a country to become very large� In general, we do not recommend creating partitions with more than a few
hundred thousand rows� A better practice would be to use a composite partition key with a country, state, city, and so
forth to reduce the number of rows per partition�

Another solution, which works better for low-cardinality columns, is to use a secondary index:

The secondary index allows users to run queries like the following:

This is convenient and looks much like a relational database� So why not always use a secondary index as opposed to
creating query-specific tables?

The challenge is how secondary indexes are stored� Replicating a global index for every record on every Cassandra
host is not feasible, so instead, Cassandra maintains a secondary index on each host indexing only the data on that
host� To use a secondary index to search across all user_accounts in the UK, the query needs to check with every
node in the Cassandra cluster, and then use the local index to retrieve only the records where country = “UK”� This is
expensive since user accounts stored in the index reside in different partitions, but at least the query only reads records
for users known to reside in the UK—far less expensive than a full table scan�

Creating a secondary index on a high-cardinality column like email would be disastrous� Whereas there are only 195
countries, in a table with 100,000,000 rows, every email address would be unique� The index on each host would be
enormous, and the amount of work required to support the query on each host would scale accordingly�

Secondary indexes have their place, but they should only be used when queries are expected to return tens or perhaps
hundreds of rows at most, and when the indexed column has medium cardinality�

16

Data Modeling in Apache Cassandra™

Materialized views
Consider a table holding user accounts where a unique username identifies an account� The table structure below is
ideal for looking up users by username (the partition key)�

Now imagine that we also need to retrieve user accounts by email� It would be straightforward to solve this problem by
creating another table designed to support the new query, with email designated as the partition key and username as
the clustering key� There is also another good option called materialized view�

A materialized view is essentially a CQL table that is defined using a base table� It is automatically maintained by
Cassandra and queried like regular tables�

Materialized views are great for convenience and have comparable performance as base tables, but each materialized
view is restricted to a single base table� They work the best for high-cardinality columns�

Using batches effectively
Batch operations in Cassandra provide a way to group multiple insert, update, or delete queries together� Cassandra
supports two types of batches: unlogged and logged batches� Logged batches are atomic—in other words, either all
operations in the batch complete or none complete� Batches are useful in updating denormalized tables—updating a
value spread across multiple tables and treating the update as a single transaction�

Developers new to Cassandra often make the mistake of assuming that batches will improve performance� For batches that
update data across multiple partitions, the opposite is usually the case� A single coordinator node is assigned the responsibility
of handling all the queries between the BEGIN BATCH and END BATCH statements� The coordinator most likely won’t have local
replicas of required data so it will need to reach out to multiple nodes in the Cassandra cluster, thereby becoming a bottleneck as
it manages traffic for multiple queries across many nodes� The batch may fail if there are not enough nodes up and responding�

The exception is a batch where all operations write to a single partition� In this single partition case, the batch
coordination and database update activities can all be handled efficiently on a single Cassandra node and the
unlogged batch can outperform discrete queries�

Logged batches are 30% slower than unlogged batches, but logged batches provide an excellent way to enforce
consistency when updating denormalized data� Suppose a user wishes to change the name of a previously uploaded
video� The video name appears in multiple tables� This operation is performed rarely, and in this case, the need for
atomicity outweighs any performance concerns, so grouping queries in a logged batch is a good design decision�

17

Data Modeling in Apache Cassandra™

LEARNING MORE
For developers wanting to learn more about data modeling in Cassandra, DataStax offers
a free course (DS220: Data Modeling) available at the DataStax Academy�

The data modeling guidelines offered here apply to Apache Cassandra, DataStax Distribution of Apache Cassandra
as well as DataStax Enterprise� Developers that prefer a supported version of Cassandra that is 100% compatible with
open source might consider DataStax Distribution of Apache Cassandra as a good place to start�

The DataStax Distribution of Apache Cassandra can be downloaded at https://downloads�datastax�com/#ddac�

SUMMARY
Getting the data model right is a critical first step in building a successful, scalable
application that is easy to manage and maintain� A good way to arrive at a correct
and robust data model is to work through a proven methodology for data modeling�
Five key steps are to:

1. Map out the application workflow to identify all the functionality that the application needs to support.

2. Practice “query-first design” thinking about how to structure tables optimally to support the queries required by
each workflow step.

3. Design the tables that will support the required queries using Chebotko diagrams.

4. Pay special attention to primary key, partition key, and clustering key design.

5. Use Cassandra data types effectively and think about where you can use unique Cassandra features such as
collections and user-defined types to simplify the design.

Cassandra meets all customer requirements around scale, performance, and availability, making it a preferred choice
among IT architects, developers, administrators, and decision-makers�

To learn more about data modeling with Cassandra, the DataStax Distribution of Apache Cassandra, and DataStax
Enterprise, visit www�datastax�com or send an email to info@datastax�com�

https://academy.datastax.com/resources/ds220-data-modeling
https://downloads.datastax.com/#ddac
http://www.datastax.com/
mailto:info@datastax.com

18

Data Modeling in Apache Cassandra™

REFERENCES

i Database normalization is the process of structuring a relational database to reduce data redundancy and improve data integrity – details are available at
https://en�wikipedia�org/wiki/Database_normalization
ii Cassandra delivers one million writes per second at Netflix – https://medium�com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-milli-
on-writes-per-second-39f45f066c9e
iii How Apache Cassandra™ Balances Consistency, Availability, and Performance – https://www�datastax�com/2019/05/how-apache-cassandra-balances-con-
sistency-availability-and-performance
iv This is a bit of an over-simplification� Recent versions of Cassandra support the notion of vnodes where each cluster node is responsible for multiple token
ranges to better distribute data� https://docs�datastax�com/en/dse/5�1/dse-arch/datastax_enterprise/dbArch/archDataDistributeVnodesUsing�html� The ring is
still a useful way to conceptualize how Cassandra stores data however�
v Details about KillrVideo including source code and design documents are available at http://killrvideo�com
vi This is a design choice� If millions of uploads per day were anticipated, a better choice of key might be “yyyymmddhh” to store fewer records per partition�
This is a good example of the trade-offs that architects need to consider when building a data model�
vii Chebotko diagrams are named after Dr� Artem Chebotko, Solution Architect at DataStax�
viii UUIDs are a standard way of generating unique identifiers – details at https://en�wikipedia�org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Database_normalization
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://www.datastax.com/2019/05/how-apache-cassandra-balances-consistency-availability-and-performance
https://www.datastax.com/2019/05/how-apache-cassandra-balances-consistency-availability-and-performance
https://docs.datastax.com/en/dse/5.1/dse-arch/datastax_enterprise/dbArch/archDataDistributeVnodesUsing.html
http://killrvideo.com
https://en.wikipedia.org/wiki/Universally_unique_identifier

ABOUT DATASTAX
DataStax helps companies compete in a rapidly changing world where expectations are high and new innovations
happen daily� DataStax is an experienced partner in on-premises, hybrid, and multi-cloud deployments and offers a
suite of distributed data management products and cloud services� We make it easy for enterprises to deliver killer
apps that crush the competition�

More than 400 of the world’s leading enterprises including Capital One, Cisco, Comcast, Delta Airlines, eBay, Macy’s,
McDonald’s, Safeway, Sony, and Walmart use DataStax to build modern applications that can be deployed across any
cloud� For more information, visit www�DataStax�com and follow us on Twitter @DataStax�

© 2019 DataStax, All Rights Reserved� DataStax, Titan, and TitanDB are registered trademarks of DataStax, Inc� and its subsidiaries in the United States and/
or other countries�

Apache, Apache Cassandra, and Cassandra are either registered trademarks or trademarks of the Apache Software Foundation or its subsidiaries in Canada,
the United States, and/or other countries�

http://DataStax.com
https://twitter.com/DataStax

