
1

3

2

4

5

5 Steps
to Apache Cassandra Success with DataStax™

 2

Table of Contents

Table	
 of	
 Contents	
 ...	
 2	

Abstract	
 ...	
 3	

Choosing	
 the	
 Right	
 Database	
 Technology	
 ..	
 3	

Implementing	
 a	
 System	
 on	
 DataStax	
 Enterprise	
 ...	
 4	

Step	
 1:	
 Requirements	
 ...	
 5	

Security	
 and	
 Encryption	
 ..	
 5	

Service	
 Level	
 Agreements	
 (SLAs)	
 ..	
 5	

Operational	
 Requirements	
 ..	
 5	

DataStax	
 Search	
 (Optional)	
 ..	
 5	

DataStax	
 Analytics	
 (Optional)	
 ...	
 5	

Step	
 2:	
 Design	
 ..	
 6	

Data	
 Model	
 Design	
 ..	
 6	

Data	
 Access	
 Object	
 Design	
 ..	
 6	

Data	
 Movement	
 Design	
 ...	
 6	

Operational	
 Design	
 ...	
 6	

Search	
 Design	
 (Optional)	
 ...	
 6	

Analytics	
 Design	
 (Optional)	
 ..	
 6	

Step	
 3:	
 Implementation	
 ..	
 7	

Infrastructure	
 &	
 Software	
 Components	
 ..	
 7	

Deployment	
 and	
 Configuration	
 Management	
 Mechanism	
 ..	
 7	

Unit	
 Testing	
 of	
 Components	
 ...	
 7	

Step	
 4:	
 Pre-­‐Production	
 Testing	
 ..	
 7	

Defect	
 Tracking	
 Items	
 (JIRA,	
 Log	
 of	
 Issues,	
 etc.)	
 ...	
 7	

Operational	
 Readiness	
 Checklist	
 Completed	
 ..	
 7	

Step	
 5:	
 Scale	
 and	
 Enhancements	
 ..	
 8	

Conclusion	
 ...	
 8	

About	
 DataStax	
 ..	
 8	

 3

Abstract
The needs of modern Internet Enterprises require that its critical online applications perform and remain available
no matter what, even at massive scale. Traditional relational database systems (RDBMS) have failed to meet
these requirements, resulting in an evolution of database technologies – giving way to newer and more
sophisticated database systems designed for this era of modern applications. The purpose of this paper is to
provide you with introductory overview to successfully manage a DataStax Enterprise implementation.

This paper is an introduction to the 5 steps of a proven methodology for implementing DataStax Enterprise in a
production environment. It is intended for IT Operations Managers / DBAs and Centralized IT Management (CIOs,
CTOs, etc.) who will be involved in the implementation and ongoing management of the database platform
supporting their critical Web, mobile and IoT applications. Even though this is not a technical document,
engineering and technology-focused individuals may find it beneficial. A detailed version, including technical
implementation details is available by request. A companion document, "DBA's Guide To NoSQL and Apache
Cassandra", is also available by request, or can be downloaded directly from our website, www.datastax.com.

Choosing the Right Database Technology
When embarking on a new business-critical application, it’s important to think through the type of database
technology you want serving as the foundation. Today, almost every company and organization has the need to
deliver Internet Enterprise applications that utilize Web and mobile technologies to transform data into insights
that can be used to strategically grow the business.

DataStax Enterprise delivers Apache Cassandra in a database platform purpose-built for the performance and
availability demands of Web, Mobile and IoT applications, giving enterprises a secure and always on database
that remains operationally simply to scale in a single data center or across multiple data centers and clouds.

DataStax Enterprise and RDBMS’s are designed to support different application requirements and typically they
co-exist in most enterprises. The key decision points on when to use which include the following:

Use an RDBMS when you need/have... Use DataStax Enterprise when you need/have...

Centralized applications (e.g. ERP) Decentralized applications (e.g. Web, Mobile)

Moderate to high availability Continuous availability; no downtime

Moderate velocity data High velocity data (devices, sensors, etc.)

Data coming in from one/few locations Data coming in from many locations

Primarily structured data Structured, with semi/unstructured

Complex/nested transactions Simple transactions

Primary concern is scaling reads Concern is to scale both writes and reads

Philosophy of scaling up for more users/data Philosophy of scaling out for more users/data

To maintain moderate data volumes with purge To maintain high data volumes; retain forever

 4

Implementing a System on DataStax Enterprise

There are 5 unique steps in a high-level approach for implementing a solution on DataStax Enterprise. This
diagram serves as a methodology-agnostic approach to project implementation. These phases could be included
as major milestones within a Waterfall, Agile, Kaban, or other project management methodology.

Figure 1 – High-level approach for implementing a solution on DataStax Enterprise

Note: There are a couple of key project lifecycle phases explicitly omitted from this diagram, as they contain no
DataStax-specific, Discovery, Planning, and Production Deployment items. Further items not depicted in this
graph, such as application and functional/security requirements are assumed to be included in the development
approach.

 5

Step 1: Requirements
The pervasive sentiment in the Apache Cassandra community as well as in the DataStax Enterprise community is
that one of the keys to success is "getting the data model right". To enable a scalable data model, specific data
model requirements are required. For next generation, transformation, upgrade, etc. projects, a great starting
point for data model requirements is to enable query level logging from within the existing database. Then, sort
the query logs in order of occurrence, starting with the most accessed queries first. These queries will provide
most, if not all, of the requirements needed to produce the data model for DataStax.

For new application/functionality requirements, treat the requirements phase of the project as you would in
achieving any API requirements effort. That is, define specific Create, Read, Update, and Delete (CRUD)
requirements with a special focus on the Read requirements. Specific requirements for the WHERE or BY clause
of read operations are required for successful data model design.

Security and Encryption
DataStax security and encryption requirements encapsulate the following areas:

• Authentication Requirements (i.e. Kerberos, Password, SSL, LDAP, etc.)
• Authorization Requirements (i.e. access to Schema, Table, or other database components)
• As DataStax Enterprise is a distributed system, encryption requirements should be defined at 2 distinct

levels (note, compression design choices will occur at this level as well)
o Client Application to DataStax (the Cluster)
o Node-to-Node (Inter-Cluster)

Service Level Agreements (SLAs)
Defining SLAs for each CRUD operation (in terms of latency measured in milliseconds), as well as for system
uptime is highly recommended to guide the design and delivery of the solution. An absence of SLAs is a project
management failure, which has a high probability of increased project duration and decreased product quality.

Operational Requirements
Chances are that you are working to build a mission critical application that will function at a very large scale
serving millions or more of customer requests per day. Defining the requirements for the operational monitoring
and management of the system is highly recommended during this phase of the project. There is a large risk that
post-production system issues go either undetected or require an increased amount of time/duration/effort to
resolve if clear operational requirements are absent from the onset of system implementation.

DataStax Search (Optional)
If the project’s scope includes DataStax Search components, then, similarly to data model requirements, search
requirements are required at this stage to provide enough clarity to develop the DataStax Search views (SOLR
cores) that will enable search functionality. The requirements should be clear enough to determine the fields that
will be searched on and returned in the results. The requirements should be clear enough to delineate how search
will be conducted, i.e. multiple search fields or single search field, the use of faceted results vs. ranked list results,
etc.

DataStax Analytics (Optional)
If the project’s scope includes DataStax Analytics components, then Analytics requirements should be captured at
this time. Analytics requirements should incorporate the statistical algorithms, required data sources, data
movement/modifications, security/access, and other analytical requirements at a clear enough level to enable a
thorough design.

 6

Step 2: Design
Data Model Design
The Data Model design should include the following components in a clear format that all team members can
understand. The following link will provide in depth reference material for data modeling in DataStax:
http://www.datastax.com/resources/data-modeling.

• Keyspace Design (Replication Strategy, Name)
• Table Design (Table Names, Partition Keys, Clustering Columns (if applicable), and physical table

properties as necessary (i.e. encryption, bloom filter settings, etc.)
• Any relationships between tables. Note that database joining within DataStax Enterprise is not technically

feasible. However, relationships between tables are still important, especially for the application
developers.

Data Access Object Design
Applications built on DataStax Enterprise are more successful when applications leverage simple Data Access
Objects to encapsulate and abstract data manipulation logic. This is opposed to the current trend in application
development, where projects leverage frameworks to encapsulate, abstract, and represent database components
as application objects, i.e. Hibernate, LinQ, JPA, ORM, etc. Designing the Data Access Object, as much as
possible, up front will help the application development team as they build out higher-level functionality.

Data Movement Design
Data Movement design includes items such as batch and real-time data integration between systems, ETL,
Change Data Capture, data pipelines, etc. Capturing data transformation logic clearly is essential to the success
of data integration initiatives. Items such as data types, transformation logic, error handling, look-ups, and data
normalization should be clearly documented as part of Data Movement design.

Operational Design
Operational Design includes topics such as tooling and the techniques used to deploy new nodes, configure and
upgrade nodes in the cluster, backup and restore operations, cluster monitoring, OpsCenter use, repairs, alerting,
disaster management processes, etc. Several organizations leverage a "playbook" approach to Operational
Design.

Search Design (Optional)
It is recommended to incorporate items such as searchable terms, returned terms, tokenizers, filters, multi-
document search terms, etc. in the Search Design for each searchable view, SOLR Core, that will be included in
the application. Please see here for more information on the items available for design with DataStax Search —
http://www.datastax.com/documentation/datastax_enterprise/4.5/datastax_enterprise/srch/srchTOC.html.

Analytics Design (Optional)
When working with DataStax Analytics, it is important to first determine which Analytics components will be
leveraged in the solution. Once that decision has been made, then specific, functionally aligned design items
should be produced, such as Hive table structures, MapReduce workflows, etc.

 7

Step 3: Implementation
Infrastructure & Software Components
This phase of the approach is typical for any type of software project. This is where "things" are actually built and
implemented. Building out infrastructure and software components do not require any special DataStax centric
highlights.

Deployment and Configuration Management Mechanism
Deployment and Configuration Management Mechanisms are going to be key to managing a distributed system. It
is recommended that all operational items are automated, as much as feasible, to optimize the process of
deploying and/or configuring nodes in the cluster. Tools like Opscenter, Docker, Vagrant, Chef, Puppet, etc. can
be leveraged to help quickly deliver the operational components necessary to manage the full software solution.

Unit Testing of Components
Unit Testing of functionality becomes a bit more complex with distributed systems compared to single node
systems. Specific defects, such as race conditions, are only observed "at scale". Because of this, it is
recommended that unit testing be executed over a small cluster that contains more than a single node. Tools
such as ccm can be used by developers to automate the process of quickly launching test clusters as part of a
unit test.

Step 4: Pre-Production Testing
Defect Tracking Items (JIRA, Log of Issues, etc.)
This is perhaps the most critical phase of this approach. This phase enables the project team to identify actual
issues prior to going to production. As stated in the unit testing section, specific defects will not be observed until
the software solution is functioning "at scale" under normal and extraordinary conditions for a period of time.
These steps are deliberately provided in the approach to enable the identification of "at scale" problems
preemptively.

Operational Readiness Checklist Completed
This phase should encompass a two-week period where, at minimum, one of the weeks is dedicated to running
the application at production scale. Only observations should be made during this period of the project. Note that
it may take several iterations of configuration, code change, and refactoring to enable the application to execute
for a full week. The one-week recommendation to ensure there are enough data points to conclude that the
application and infrastructure are adequate to handle a production workload. Apache Cassandra needs to be
stressed for this amount of time to determine if read performance degrades, due to compaction design items, or if
it remains acceptable.

Here is a list of items that should be included in an Operational Readiness Checklist for DataStax Enterprise:

• Replace a downed node and a dead seed node
• Configure and execute repair (ensure repair completes within GC_Grace_Period)
• Add a node to a cluster
• Replace a downed Data Center
• Add a Data Center to the cluster
• Decommission a node
• Restore a backup
• At a Cluster Level and Per Node Level, report on errors, throughput, latency, resource saturation,

bottlenecks, compactions, flushes, and health

 8

Step 5: Scale and Enhancements

This phase is provided to highlight the normal, operational mode of an application built on DataStax Enterprise.
This is a predictable eventuality, which can be addressed by adding nodes to expand capacity to the system.
Scaling with DataStax Enterprise is as simple as that.

Conclusion
As mentioned above, this approach is methodology-agnostic. The stages in the approach can be executed as
single, individual phases in a Waterfall approach or by iterating over each phase in small, horizontal slices of
functionality that include a facet of each phase. Please note that Pre-Production testing should be executed as a
single phase including all planned functionality for Production deployment.

There is an additional approach that shows how small, agile teams can go from Prototype (PoC) to Production
without much refactoring. Here is a link to referenced approach - http://www.slideshare.net/planetcassandra/jake-
luiciani-poc-to-production-c

The attached presentation is intended for technical audiences. It provides some good details on data modeling as
well as Pre-Production testing. The main takeaway is that, if the PoC is well constructed, then you can move
directly into the Pre-Production testing phase of this approach, skipping the requirements through implementation
phases. This highlights the scaling advantage of Apache Cassandra and DataStax Enterprise.

About DataStax
DataStax delivers Apache Cassandra™ in a database platform purpose built for the performance and availability
demands of IoT, web, and mobile applications, giving enterprises a secure always-on database that remains
operationally simple when scaled in a single datacenter or across multiple datacenters and clouds.

With more than 500 customers in over 50 countries, DataStax is the database technology of choice for the world’s
most innovative companies, such as Netflix, Adobe, Intuit, and eBay. Based in Santa Clara, Calif., DataStax is
backed by industry-leading investors including Comcast Ventures, Crosslink Capital, Lightspeed Venture
Partners, Kleiner Perkins Caufield & Byers, Meritech Capital, Premji Invest and Scale Venture Partners. For more
information, visit DataStax.com or follow us @DataStax.

